

Preface

New Countdown Second Edition is a carefully structured and graded mathematics course, comprising eleven books for Classes Pre-Primary to Class 8. The pattern followed in the entire series ensures development in all areas of a child's growth through basic multi-focal knowledge, emphasising number skills and mathematical concepts.

The Step by Step Solution Guide is a comprehensive resource that complements the New Countdown series to provide a holistic framework within which students are able to understand, grasp, approach, and apply the learned mathematical concepts, and to successfully implement the objectives of the mathematics curriculum.

This guide highlights the patterns, approaches, functions, and relationships between the curriculum strands, so that the students can apply their mathematical knowledge and develop a holistic understanding of the subject that can then be translated into real-life application. The main objective of this guide is not to simply cross-reference the answers, but to guide the students through the thinking process upon approaching a mathematical problem, to reaching the correct answer. This guide therefore provides the extensive breakdown of not only solving the equation, but also the mental strategies, appropriate reasoning and formatting, and the ability to decipher what mathematical concepts can be applied to the particular question, in order to work towards the answer.

This in-depth breakdown of solving questions encompasses all the questions in each exercise, as well as the questions in the revision exercises. There are also helpful hints available in this guide that supplements a student's thinking process when approaching a certain problem. The helpful hints will help to avoid pre-emptive misconceptions that will be beneficial to students and teachers. They help guide the student towards the correct formula by effectively contextualising the mathematical concept and linking it to real-life application. The mathematical proofing, format and reasoning is in line with the assessment expectations.

Finally, apart from the step-by-step worked solutions themselves, the end of this guide also includes a direct answer key that can be used for cross-referencing purposes by the teacher. These answers correlate to the model paper in the Assessment Resource Pack.

The Step by Step Guide provides thorough insight and furthers one's understanding of what is expected of a student in an examination beyond simply arriving at the right answer. This guide helps ensure that the process comes from a place of deep understanding and reasoning of mathematical concepts by guiding the students' approach and thinking process during problem solving, and therefore reaching the desired answer.

Contents

Sets2. Rational NumbersDecimal NumbersSquares and Square RootsRevision 1: NumbersRate, Ratio and Proportionb. Financial ArithmeticRevision 2: Arithmetic40
3 Algebraic Polynomials43
B) Algebraic Identities 50
Factorisation of Algebraic Expressions 54 5
(10) Linear Equations 57
Revision 3: Algebra 66
D

Sets

Exercise 1

Helpful Hints:

- Union of two or more sets include all the elements in the given sets.
- The difference of two sets A and B is the set of elements of A which are not in set B.
- If all the elements of B are also the members of A, then B is a subset (C) of A.

1. (i) The set of natural numbers greater than 10 and less than 17 is $\{11,12,13,14,15,16\}$.
(ii) The set of prime numbers from 1 to 30 is $\{2,3,5,7,11,13,17,19,23,29\}$.
(iii) $\{2,4,6,8,10,12\} \cup\{1,3,5,7,9,11\}$ $=\{1,2,3,4,5,6,7,8,9,10,11,12\}$.
(iv) $\{7,13,18,21,25\}-\{13,21,25\}=\{7,18\}$
(v) B is $a \subset$ of A, because all the members of B are also the members of A .
2. (i) False, because both the sets do not have any elements in common.
(ii) True by definition
(iii) True by definition
(iv) True

If there is no member of $A \cap B$, then $A \cap B$ does not have common members.
(v) False, because the difference of two sets consists of the members of first set which are not the members of second set.
3. (i) $\mathbb{Z}=\{-3,-2,-1,0,1,2,3\}$
(ii) $\mathbb{O}=\{3,9,15,21,27\}$
(iii) $\mathbb{P}=\{53,59,61,67,71,73,79,83,89\}$
(iv) $\mathbb{E}=\{10,12,14,16,18\}$
4. $A=\{2,4,6,8\}, \quad B=\{1,3,5,7\}$
$A \cup B=\{2,4,6,8\} \cup\{1,3,5,7\}$
$A \cup B=\{1,2,3,4,5,6,7,8\}$
5. $A=\{3,6,9\}, \quad B=\{ \}$
$A \cup B=\{3,6,9\}, \cup\{ \}$
$A \cup B=\{3,6,9\}$
6. $R=\{1,2,3,4,5,6\}, \quad S=\{0,3,6,9\}$,
$T=\{1,3,5,7\}$
(i) $\mathrm{R} \cap \mathrm{T}=\{1,2,3,4,5,6\} \cap\{1,3,5,7\}$
$R \cap T=\{1,3,5\}$
(ii) $S \cap R=\{0,3,6,9\} \cap\{1,2,3,4,5,6\}$

$$
=\{3,6\}
$$

(iii) $T \cap S=\{1,3,5,7\} \cap\{0,3,6,9\}$
$=\{3\}$
7. (i) $A \cup B=\{0,1,2,3\} \cup\{2,3,4,5,6\}$

$$
=\{0,1,2,3,4,5,6\}
$$

(ii) $B \cup C=\{2,3,4,5,6\} \cup\{5,6,7,8\}$

$$
=\{2,3,4,5,6,7,8\}
$$

(iii) $C \cup D=\{5,6,7,8\} \cup\{2,4,6,8\}$

$$
=\{2,4,5,6,7,8)
$$

(iv) $A \cap B=\{0,1,2,3,\} \cap\{2,3,4,5,6\}$

$$
=\{2,3\}
$$

(v) $B \cap C=\{2,3,4,5,6\} \cap\{5,6,7,8\}$

$$
=\{5,6\}
$$

(vi) $\mathrm{C} \cap \mathrm{D}=\{5,6,78\} \cap\{2,4,6,8\}$

$$
=\{6,8\}
$$

(vii) $A^{\prime}=\mathbb{U}-A$ $=\{0,1,2, \ldots, 8\},-\{0,1,2,3$, $=\{4,5,6,7,8\}$
(viii) $B^{\prime}=\mathbb{U}-B$

$$
=\{0,1,2, \ldots, 8\},-\{2,3,4,5,6\}
$$

$$
=\{0,1,7,8\}
$$

$$
\begin{aligned}
& \text { (ix) } C^{\prime}=\mathbb{U}-\mathrm{C} \\
& =\{0,1,2, \ldots, 8\},-\{5,6,7,8\} \\
& =\{0,1,2,3,4\} \\
& \text { (x) } D^{\prime}=\mathbb{U}-D \\
& =\{0,1,2, \ldots, 8\},-\{2,4,6,8\} \\
& =\{0,1,3,5,7\} \\
& \text { (xi) } \quad \mathrm{A} \backslash \mathrm{~B}=\mathrm{A}-\mathrm{B} \\
& =\{0,1,2,3\}-\{2,3,4,5,6\} \\
& =\{0,1\} \\
& \text { (xii) } C \backslash D=C-D \\
& =\{5,6,7,8\}-\{2,4,6,8\} \\
& =\{5,7\} \\
& \text { (xiii) } B \backslash A=B-A \\
& =\{2,3,4,5,6\}-\{0,1,2,3,\} \\
& =\{4,5,6\} \\
& \text { (xiv) } D \backslash A=D-A \\
& =\{2,4,6,8\}-\{0,1,2,3\} \\
& =\{4,6,8\} \\
& \text { 8. (i) } A \cup B=\{0,2,4,6,8\} \cup\{1,3,5,7,9\} \\
& =\{0,1,2,3,4,5,6,7,8,9\} \\
& \text { (ii) } A \cup D=\{0,2,4,6,8\} \cup\{4,5,6,7\} \\
& =\{0,2,4,5,6,7,8\} \\
& \text { (iii) } B \cup C=\{1,3,5,7,9\} \cup\{1,2,3,8\} \\
& =\{1,2,3,5,7,8,9\} \\
& \text { (iv) } C \cup D=\{1,2,3,8\} \\
& C \cup D=\{1,2,3,8\} \cup\{4,5,6,7\} \\
& =\{1,2,3,4,5,6,7,8\} \\
& \text { (v) } A^{\prime}=\mathbb{U}-A \\
& =\{0,1,2, \ldots, 9\}-\{0,2,4,6,8\} \\
& =\{1,3,5,7,9\} \\
& \text { (vi) } B^{\prime}=\mathbb{U}-B \\
& =\{0,1,2, \ldots, 9\}-\{1,3,5,7,9\} \\
& =\{0,2,4,6,8\} \\
& \text { (vii) } C^{\prime}=\mathbb{U}-\mathrm{C} \\
& =\{0,1,2, \ldots, 9\}-\{1,2,3,8\} \\
& =\{0,4,5,6,7,9\}
\end{aligned}
$$

(viii) $\mathrm{D}^{\prime}=\mathbb{U}-\mathrm{D}$

$$
=\{0,1,2, \ldots, 9\}-\{4,5,6,7\}
$$

$$
=\{0,1,2,3,8,9\}
$$

(ix) $B \backslash A=B-A$
$=\{1,3,5,7,9\}-\{0,2,4,6,8\}$
$=\{1,3,5,7,9\}$
(x) $\quad \mathrm{DIC}=\mathrm{D}-\mathrm{C}$
$=\{4,5,6,7\}-\{1,2,3,8\}$
$=\{4,5,6,7\}$
9. (i) $A \cup B=\{0,2,4,6,8\} \cup\{1,3,5,7,9\}$
$=\{0,1,2,3,4,5,6,7,8,9\}$
(ii) $A \cap B=\{0,2,4,6,8\} \cap\{1,3,5,7,9\}$
$=\{ \}$
(iii) $A \backslash B=A-B$
$=\{0,2,4,6,8\}-\{1,3,5,7,9\}$
$=\{0,2,4,6,8\}$
(iv) $B \backslash A=B-A$
$=\{1,3,5,7,9\}-\{1,3,5,7,9\}$
$=\{1,3,5,7,9\}$
10. (i) $A \backslash B=A-B$
$=\{a, b, c, d, e\}-\{b, e, g, l, k\}$
$=\{a, c, d\}$
(ii) $B \backslash A=B-A$
$=\{b, e, g, l, k\}-\{a, b, c, d, e\}$
$=\{g, l, k\}$
11. $\mathbb{U}=A \cup A^{\prime}$

$$
=\{1,3,5,7,9\} \cup\{4,5,6,7,12\}
$$

$\mathbb{U}=\{1,3,4,5,6,7,9,12\}$
12. Taking LHS: $(A \cup B)^{\prime}$

$$
\begin{aligned}
(A \cup B) & =\{5,6,7\} \cup\{1,3,5\} \\
& =\{1,3,5,6,7\} \\
(A \cup B)^{\prime} & =\mathbb{U}-(A \cup B) \\
& =\{1,2,3,4,5,6,7\}-\{1,3,5,6,7\} \\
& =\{2,4\}
\end{aligned}
$$

Taking RHS: $A^{\prime} \cap B^{\prime}$

$$
\begin{aligned}
A^{\prime} & =\{1,2,3,4,5,6,7\}-\{5,6,7\} \\
& =\{1,2,3,4\}
\end{aligned}
$$

$$
\begin{aligned}
B^{\prime} & =\{1,2,3,4,5,6,7\}-\{1,3,5\} \\
& =\{2,4,6,7\} \\
A^{\prime} \cap B^{\prime} & =\{1,2,3,4\} \cap\{2,4,6,7\} \\
& =\{2,4\}
\end{aligned}
$$

LHS = RHS

Hence, $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}($ Proved $)$.
13. Taking LHS: $(A \cap B)^{\prime}$

$$
\left.\begin{array}{rl}
(A \cap B) & =\{b, c, d\} \cap\{a, e, d\} \\
& =\{d\} \\
(A \cap B)^{\prime} & =\mathbb{U}-(A \cap B) \\
& =\{a, b, c, d, e, f\}-\{d\} \\
& =\{a, b, c, e, f\} \\
\text { Taking } & R H S A^{\prime} \cup B^{\prime} \\
A^{\prime} & =\{a, b, c, d, e, f\}-\{b, c, d\} \\
& =\{a, e, f\} \\
B^{\prime} & =\{a, b, c, d, e, f\}-\{a, e, d\} \\
& =\{b, c, f\} \\
A^{\prime} \cup B^{\prime} & =\{a, e, f\} \cup\{b, c, f\} \\
& =\{a, b, c, e, f\} \\
\text { LHS } & =R H S
\end{array}\right\}
$$

Multiple Choice Question 1

1. Option A is correct.

Set B of even numbers will be subtracted from set A.
2. Option A is correct.

Rectangular region is the universal set.
3. Option B is correct.
$A^{\prime}=\mathbb{U}-A$ and $B^{\prime}=\mathbb{U}-B$
The set containing all the members of A^{\prime} and B^{\prime} will be $A^{\prime} \cup B^{\prime}$.
4. Option C is correct.
$\mathbb{U} / A=\mathbb{U}-A=A^{\prime}$
5. Option B is correct.

Equivalent sets are the sets having same number of elements.

Rational Numbers

Exercise 2A

1.

Helpful Hint

A number in the form $\frac{a}{b}$ where a and b are integers and $b \neq 0$ is a rational number.
(i), (ii), (iv), (v), and (vi) are rational numbers because their denominator are not zero.
2.
(i) 7
(ii) -5
(iii) - 9
(iv) 21
3.

$$
\frac{(-7) \times 2}{21-2}=\frac{-14}{19}
$$

Helpful Hint

A negative denominator or numerator can bè made positive by multiplying numerator and , denominator with same negative number.
4. (i) $\frac{15-4}{37 \times(-2)}=\frac{11}{-74}$
(ii) $\frac{11 \times(-1)}{-74 \times(-1)}=\frac{-11}{74}$
5. (i)

$$
-\frac{3}{7}=\frac{3 \times 2}{-7 \times 2}=\frac{6}{-14}
$$

(ii) $-\frac{3}{7}=\frac{-3 \times 5}{7 \times 5}=\frac{-15}{35}$
(iii) $-\frac{3}{7}=\frac{3 \times 1}{-7 \times 1}=\frac{3}{-7}$
(iv) $-\frac{3}{7}=\frac{3 \times 3}{(-7) \times 3}=\frac{9}{-21}$
6. (i) $\frac{-2}{-5}=\frac{-2 \times(-1)}{-5 \times(-1)}=\frac{2}{5}$
(ii) $\frac{-2}{-5}=\frac{-2 \times 3}{-5 \times 3}=\frac{-6}{-15}$
(iii) $\frac{-2}{-5}=\frac{-2 \times(-8)}{-5 \times(-8)}=\frac{16}{40}$
(iv) $\frac{-2}{-5}=\frac{-2 \times 10}{-5 \times 10}=\frac{-20}{-50}$
7. (i)
(i) $-\frac{7}{1}=\frac{-7}{1}$
(ii) $\frac{-5}{-2}=\frac{-5 \times(-1)}{-2 \times(-1)}=\frac{5}{2}$
(iii) $\frac{-31}{-3}=\frac{-31 \times(-1)}{-3 \times(-1)}=\frac{31}{3}$
(iv) $-\frac{9}{5}=\frac{-9}{5}$
8. (i) $-\frac{11}{4}=-2 \frac{3}{4}$

(ii)

(iii)

(iv)

9. Yes, $\frac{2}{-3}=-\frac{2}{3}$

$$
\frac{-2}{3}=\frac{2}{-3}=-\frac{2}{3}
$$

Exercise 2B

Helpful Hint

When the numerator and denominator of a rational number have no common divisor other than 1 and the denominator of the number is positive, then the rational number is its standard form.

1. (i) $\frac{56}{-96}=\frac{56 \div 8}{-96 \div 8}=\frac{7 \times(-1)}{-12 \times(-1)}$

$$
=\frac{-7}{12}
$$

(ii) $\frac{3}{4}=\frac{3 \times 15}{4 \times 15}=\frac{45}{60}$
$\frac{11}{15}=\frac{11 \times 4}{15 \times 4}=\frac{44}{60}$
Now 45 > 44
$\therefore \quad \frac{45}{60}>\frac{44}{60}$

$$
\text { or } \frac{3}{4}>\frac{11}{15}
$$

Helpful Hint

The product of a number and its reciprocal is , always 1.
(iii) Reciprocal of $\frac{5}{7}$ is $\frac{7}{5}$
(iv) $\frac{5}{7}=\frac{5 \times 5}{7 \times 5}=\frac{25}{35}$

$$
\frac{2}{5}=\frac{2 \times 7}{5 \times 7}=\frac{14}{35}
$$

$$
25>14
$$

$$
\therefore \frac{25}{35}>\frac{14}{35}
$$

$$
\text { or } \frac{5}{7}>\frac{2}{5}
$$

Hence, $\frac{5}{7}$ is greater than $\frac{2}{5}$.
(v) $\frac{-9}{-8}=\frac{-9 \times(-1)}{-8 \times(-1)}$

$$
\frac{-9}{-8}=\frac{9}{8}
$$

\therefore standard form is $\frac{9}{8}$.
2.
(i) $\frac{4}{6}=\frac{2}{3}$
(ii) $\frac{4}{-9}=-\frac{4}{9}$
(iii) $\frac{-11}{-13}=\frac{11}{13}$
(iv) $\frac{-21}{-28}=\frac{21}{28} \frac{3}{4}$
(v) $\frac{42}{-48}=\frac{42 \div 6}{-48 \div 6}=\frac{7 \times(-1)}{-8 \times(-1)}=\frac{-7}{8}$
3. (i) $\frac{4}{5}=\frac{-12}{-15}=\frac{20}{25}$
(ii) $\frac{-5}{7}=\frac{-15}{21}=\frac{-35}{49}$
(iii) $\frac{-3}{8}=\frac{6}{-16}=\frac{-9}{24}$
4.

Helpful Hint

Every positive rational number is greater
than a negative rational number.
(i) $\frac{2}{7}>\frac{-3}{7}$ or $\frac{2}{7}>-\frac{3}{7}$
(ii) $-\frac{4}{9}=-\frac{4 \times 2}{9 \times 2}=-\frac{8}{18}$

$$
-\frac{5}{6}=-\frac{5 \times 3}{6 \times 3}=-\frac{15}{18}
$$

$$
-8>-15
$$

$$
\therefore \frac{-8}{18}>\frac{-15}{18} \text { or }-\frac{4}{9}>-\frac{5}{6}
$$

(iii) $\frac{4}{7}=\frac{4 \times 2}{7 \times 2}=\frac{8}{14}$

$$
\begin{aligned}
& \frac{1}{2}=\frac{1}{2}=\frac{1 \times 7}{2 \times 7}=\frac{7}{14} \\
& 8>7 \\
& \therefore \frac{8}{14}>\frac{7}{14} \text { or } \frac{4}{7}>\frac{1}{2}
\end{aligned}
$$

(iv) $\frac{-3}{-4}=\frac{-6}{8}$

$$
\begin{aligned}
& \frac{-5}{8}>-\frac{6}{8} \\
& -5>-6 \\
& \frac{-5}{8}>\frac{-3}{4}
\end{aligned}
$$

(v) $\frac{5}{-8} \cdot \frac{-7}{11}$

$$
\frac{5 \times 11}{-8 \times 11}=\frac{55}{-88}
$$

$$
\frac{-7 \times-8}{11 \times-8}=\frac{56}{-88}
$$

$$
\frac{55}{-88}>\frac{56}{-88} \text { or } \frac{5}{-8}>\frac{-7}{11}
$$

(vi) $\frac{-5}{-21}>\frac{-3}{-13}$

Use the same steps as given above.
5.

Helpful Hint

To compare two fractions we make them equivalent, then compare the numerators. , Larger numerator makes larger fraction.
(i) $\frac{-7}{12} \square \frac{5}{-8}$

$$
\begin{aligned}
& \frac{-7 \times 2}{12 \times 2}=\frac{-14}{24}, \frac{-5 \times 3}{8 \times 3}=\frac{-15}{24} \\
& \frac{-14}{24}>\frac{-15}{24} \text { or } \frac{-7}{12} \square>-\frac{5}{8} \\
& \frac{-7}{12}>\frac{5}{-8}
\end{aligned}
$$

(ii) $\frac{-4}{9} \square \frac{-3}{7}$

$$
\begin{aligned}
& \frac{-4 \times 7}{9 \times 7}=\frac{-28}{63}, \frac{-3 \times 9}{7 \times 9}=\frac{-27}{63} \\
& \frac{-28}{63}<\frac{-27}{63} \text { or } \frac{-4}{9}<\frac{-3}{7}
\end{aligned}
$$

(iii) $\frac{-7}{-8} \square \frac{14}{17}$

$$
\begin{aligned}
& \frac{-7 \times 17}{-8 \times 17}=\frac{-119}{-136}, \frac{14 \times-8}{17 \times-8}=\frac{-112}{-136} \\
& \frac{-119}{-136}>\frac{-112}{-136} \text { or } \frac{-7}{-8} \square \frac{14}{17}
\end{aligned}
$$

(iv) $\frac{-2}{9} \square \frac{8}{-36}$

$$
\begin{aligned}
& \frac{8}{-36}=-\frac{8}{36}=\frac{-2}{9} \\
& \frac{-2}{9}=\frac{8}{-36}
\end{aligned}
$$

Solve (v) and (vi) using the above method.
(v) $\frac{5}{8} \longrightarrow \frac{25}{45}$
(vi) $\frac{4}{6} \longrightarrow \frac{1}{12}$
6.

$$
\begin{aligned}
& \frac{2}{5}, \frac{-1}{2}, \frac{8}{-15}, \frac{-3}{-10} \\
= & \frac{2 \times 6}{5 \times 6}, \frac{-1 \times 15}{2 \times 15}, \frac{8 \times 2}{-15 \times 2}, \frac{-3 \times 3}{-10 \times 3} \\
= & \frac{12}{30}, \frac{-15}{30}, \frac{-16}{30}, \frac{-9}{-30} \\
= & \frac{12}{30}, \frac{-15}{30}, \frac{-16}{30}, \frac{9}{30}
\end{aligned}
$$

Arranging in ascending order:
$=\frac{-16}{30}, \frac{-15}{30}, \frac{9}{30}, \frac{12}{30}$
$=\frac{8}{-15}, \frac{-1}{2}, \frac{-3}{-10}, \frac{2}{5}$
7. $=\frac{-7}{10}, \frac{8}{-15}, \frac{19}{30}, \frac{-2}{-5}$

Writing in standard form:

$$
\begin{aligned}
& =\frac{-7}{10}, \frac{-8}{15}, \frac{19}{30}, \frac{2}{5} \\
& =\frac{-21}{30}, \frac{-16}{30}, \frac{19}{30}, \frac{12}{30}
\end{aligned}
$$

Arranging in descending order:

$$
\frac{19}{30}, \frac{12}{30}, \frac{-16}{30}, \frac{-21}{30}
$$

$$
=\frac{19}{30} \cdot \frac{-2}{-5}, \frac{-8}{15}, \frac{-7}{10}
$$

8. (i) $\frac{1}{-3}$ or $\frac{-1}{3}$
(ii) 7
(iii) $-\frac{9}{2}$
(iv) $\frac{-12}{11}$ or $-\frac{12}{11}$
(v) $\frac{-8}{-3}$ or $\frac{8}{3}$
(vi) $\frac{2}{-3} \times \frac{4}{-5}=\frac{8}{15}$

Reciprocal of $\frac{8}{15}=\frac{15}{8}$
(vii) $\frac{-\not 8^{1}}{4} \times \frac{-5}{-\varnothing^{2}}$
$=\frac{5}{-8}$ Reciprocal of $\frac{5}{-8}=\frac{-8}{5}$
9.

,_ _ S- Helpful Hint

To round off a rational number, we convert
, the rational number into decimal number.
(i) $\frac{25}{4}$

$$
\begin{aligned}
& =\frac{25 \times 25}{4 \times 25} \\
& =\frac{625}{100} \\
& =6.25
\end{aligned}
$$

$=6.3$ (rounded off to the nearest tenth)
(ii) $=\frac{10 z^{51}}{1 \sigma_{8}}$
$=\frac{51}{8}$
$=6.375$
6.375 rounded off is the nearest tenth in 6.4
6.375 rounded off to the nearest hundredth is 6.38
(iii)

777
16
$=48.5625$
48.5625 rounded off to the nearest tenth is 48.6
48.5625 rounded off to the nearest hundredth is 48.56
48.5625 rounded off to the nearest thousandth is 48.563

Exercise 2C

Helpful Hint

When two or more rational numbers are added, subtracted, multiplied, or divided, ithe result is another rational number.

1. (i) True
(ii) True
(iii) True
(iv) False

The product of a number with its multiplicative inverse is 1 .
Multiplicative inverse of a number is exactly reciprocal of the number.
(v) True

Rational number are added or subtracted by converting them into equivalent fractions.
2. (i) $\frac{3}{5}+\left(\frac{-2}{5}\right)$

$$
\begin{aligned}
& =\frac{3}{5}-\frac{2}{5} \\
& =\frac{3-2}{5} \\
& =\frac{1}{5}
\end{aligned}
$$

(ii) $\frac{-5}{8}+\frac{1}{4}$

$$
=\frac{-5}{8}+\frac{2}{8}
$$

$$
=\frac{-5+2}{8}
$$

$$
=\frac{-3}{8}=-\frac{3}{8}
$$

(iii) $\frac{3}{7}+\left(\frac{-2}{7}\right)$

$$
\begin{aligned}
& =\frac{3}{7}-\frac{2}{7} \\
& =\frac{3-2}{7} \\
& =\frac{1}{7}
\end{aligned}
$$

(iv) $-\frac{3}{11}+\left(\frac{-5}{11}\right)$
$=-\frac{3}{11}-\frac{5}{11}$
$=\frac{-3-5}{11}$
$=-\frac{8}{11}$
3. (i) $-\frac{7}{11}+\frac{1}{6}$

$$
=\frac{-42+11}{66}
$$

$$
\begin{aligned}
& =\frac{-31}{66} \\
& =-\frac{31}{66}
\end{aligned}
$$

(ii) $\frac{-3}{-7}+\frac{2}{5}$

$$
=\frac{3}{7}+\frac{2}{5}
$$

$$
=\frac{15+14}{35}
$$

$$
=\frac{29}{35}
$$

(iii) $\frac{-7}{9}+\frac{2}{7}$

$$
=\frac{-49+18}{63}
$$

$$
=\frac{-31}{63}=-\frac{31}{63}
$$

(iv) $\frac{3}{4}-\frac{2}{5}$

$$
=\frac{15-8}{20}
$$

$$
=\frac{7}{20}
$$

4. Taking LHS:

$$
\begin{aligned}
& \left(-\frac{2}{5}+\frac{4}{9}\right)+\left(-\frac{3}{4}\right) \\
& =\left(\frac{-18+20}{45}\right)-\frac{3}{4} \\
& =\frac{2}{45}-\frac{3}{4} \\
& =\left(\frac{8-135}{180}\right) \\
& =\frac{-127}{180}
\end{aligned}
$$

Taking RHS:

$$
\begin{aligned}
& -\frac{2}{5}+\left(\frac{4}{9}\right)+\left(-\frac{3}{4}\right) \\
& =-\frac{2}{5}+\left(\frac{4}{9}-\frac{3}{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{2}{5}+\left(\frac{16-27}{36}\right) \\
& =-\frac{2}{5}+\left(-\frac{11}{136}\right) \\
& =-\frac{1}{5}-\frac{10}{36} \\
& =\frac{-72-55}{180} \\
& =\frac{-127}{180}
\end{aligned}
$$

LHS $=$ RHS (Associative law is verified).
5. (i) $-\frac{6}{7}-\frac{-2}{7}$

$$
\begin{aligned}
& =-\frac{6}{7}+\frac{2}{7} \\
& =\frac{-6+2}{7} \\
& =-\frac{4}{7}
\end{aligned}
$$

(ii) $\frac{7}{24}-\frac{11}{36}$
$=\frac{21-22}{72}$
$=-\frac{1}{72}$
(iii) $\frac{10}{63}-\left(\frac{-6}{7}\right)$

$$
\begin{aligned}
& =\frac{10}{63}+\frac{6}{7} \\
& =\frac{10+54}{63}
\end{aligned}
$$

$$
=\frac{64}{63}
$$

(iv) $-\frac{11}{13}-\left(\frac{-5}{26}\right)$

$$
=-\frac{11}{13}+\frac{5}{26}
$$

$$
\begin{aligned}
& =\frac{-22+5}{26} \\
& =-\frac{17}{26}
\end{aligned}
$$

6. (i) $\frac{3}{7}+\frac{5}{9}-\frac{-2}{3}$

$$
\begin{aligned}
& =\frac{3}{7}+\frac{5}{9}+\frac{2}{3} \\
& =\frac{27+35+42}{63} \\
& =\frac{104}{63}
\end{aligned}
$$

(ii) $\frac{-4}{11}+\left(\frac{-2}{3}\right)-\left(\frac{-5}{9}\right)$

$$
\begin{aligned}
& =-\frac{4}{11}-\frac{2}{3}+\frac{5}{9} \\
& =\frac{-36-66+55}{99}
\end{aligned}
$$

$$
=\frac{-102+55}{99}
$$

$$
=\frac{-47}{99}
$$

$$
=-\frac{47}{99}
$$

(iii) $-\frac{1}{6}+\left(\frac{-2}{3}\right)-\frac{1}{3}$
$=-\frac{1}{6}-\frac{2}{3}-\frac{1}{3}$
$=\frac{-1-4-2}{6}$
$=\frac{-7}{6}$
$=-\frac{7}{6}$
7.

$$
\text { (i) } \begin{aligned}
& \frac{4}{1 \not Z_{5}} \times \frac{\not \beta^{1}}{\not \phi_{2}} \\
= & \frac{1}{10}
\end{aligned}
$$

(ii) $\frac{3^{n}}{11} \times-\frac{2}{\rho_{3}}$

$$
=-\frac{2}{33}
$$

(iii) $\left(-\frac{5}{7}\right) \times \frac{14}{15}$

$$
\begin{gathered}
=\frac{-5^{n}}{7^{\gamma}} \times \frac{14^{2}}{1 \mathscr{F}_{3}} \\
=-\frac{2}{3}
\end{gathered}
$$

8. (i)

$$
\left(\frac{-8}{5} \times \frac{3}{4}\right)+\left(\frac{7}{8} \times \frac{-16}{25}\right)
$$

$$
\left(\frac{-8^{2}}{5} \times \frac{3}{\not A_{1}}\right)+\left(\frac{7}{8} \times-\frac{16^{2}}{25}\right)
$$

$$
=-\frac{6}{5}+\left(-\frac{14}{25}\right)
$$

$$
=-\frac{6}{5}-\frac{14}{25}
$$

$$
=\frac{-30-14}{25}
$$

$$
=\frac{-44}{25}
$$

(ii) $\left(\frac{7}{25} \times \frac{-15}{28}\right)-\left(\frac{-3}{5} \times \frac{4}{9}\right)$

$$
\begin{aligned}
& =\left(\frac{力^{1}}{25_{5}} \times-\frac{15^{3}}{28_{4}}\right)-\left(-\frac{\beta^{1}}{5} \times \frac{4}{\emptyset_{3}}\right) \\
& =-\frac{3}{20}+\frac{4}{15} \\
& =-\frac{-9+16}{60} \\
& =\frac{7}{60}
\end{aligned}
$$

(iii) $\left(\frac{-3}{4} \times \frac{-8}{15}\right)-\left(\frac{2}{3} \times \frac{-3}{5}\right)-\left(\frac{-4}{7} \times \frac{-14}{15}\right)$
$=\left(-\frac{3^{11}}{A_{1}} \times-\frac{\phi^{2}}{15_{5}}\right)-\left(\frac{2}{3^{6}} \times-\frac{z^{\prime}}{5}\right)-\left(-\frac{4}{7_{1}} \times \frac{-14^{2}}{15}\right)$

$$
\begin{aligned}
& =\frac{2}{5}+\frac{2}{5}-\frac{8}{15} \\
& =\frac{6+6-8}{15} \\
& =\frac{4}{15}
\end{aligned}
$$

9. LHS:

$$
\begin{aligned}
& \left(-\frac{5}{8} \times \frac{4}{15}\right) \times \frac{-3}{4} \\
& =\left(-\frac{\not 5}{8_{2}} \times \frac{4^{1}}{15_{3}}\right) \times\left(\frac{-3}{4}\right) \\
& =-\frac{1}{6_{2}} \times\left(\frac{-3}{4}\right) \\
& =\frac{1}{8}
\end{aligned}
$$

RHS:

$$
\begin{aligned}
& -\frac{5}{8} \times\left(\frac{4}{15} \times \frac{-3}{4}\right) \\
& =-\frac{5}{8}\left(\frac{4}{15_{5}} \times-\frac{\not 2}{4}\right) \\
& =-\frac{5}{8} \times-\left(\frac{1}{5}\right) \\
& =\frac{1}{8} \\
& \text { LHS }=\text { RHS }
\end{aligned}
$$

10. LHS:

$$
\begin{aligned}
& -\frac{2}{3}\left(\frac{4}{5}+\frac{-8}{15}\right) \\
& =-\frac{2}{3}\left(\frac{12-8}{15}\right) \\
& =-\frac{2}{3} \times \frac{4}{15} \\
& =-\frac{8}{45}
\end{aligned}
$$

RHS:

$$
\begin{aligned}
& \left(-\frac{2}{3} \times \frac{4}{5}\right)+\left(-\frac{2}{3} \times \frac{-8}{15}\right) \\
& =-\frac{8}{15}+\frac{16}{45}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-24+16}{45} \\
& =-\frac{8}{45}
\end{aligned}
$$

LHS = RHS
11.(i) $-A^{2} \times-\frac{5}{Z_{1}}$

$$
=10
$$

(ii) $\frac{15}{7} \div\left(-\frac{5}{14}\right)$

$$
\begin{aligned}
& =\left(\frac{15^{3}}{T_{1}} \times-\frac{14^{2}}{5_{1}}\right) \\
& =-6
\end{aligned}
$$

(iii) $-\frac{3}{8} \div\left(-\frac{3}{4_{1}}\right)$

$$
=-\frac{{ }^{1} \not Z}{\not Z Z_{2}} \times\left(-\frac{{ }^{1} \not A}{\not Z_{1}}\right)=\frac{1}{2}
$$

(iv) $\left(-\frac{4}{13}\right) \div\left(-\frac{8}{39}\right)$

$$
\begin{aligned}
& =-\frac{4}{13_{1}} \times\left(-\frac{39^{3}}{8_{2}}\right) \\
& =\frac{3}{2}
\end{aligned}
$$

(v) $\left(-\frac{6}{15}\right) \div\left(\frac{4}{35}\right)$

$=-\frac{7}{2}$
12.

(i) $\left|\frac{7}{8}\right|$
(iv) $\left|\frac{-5}{6}\right|$

$$
=\frac{|7|}{|8|}
$$

$$
=\frac{|-5|}{|6|}
$$

$$
=\frac{7}{8}
$$

$$
=\frac{5}{6}
$$

(ii) $\left|\frac{-3}{6}\right|$
(iv) $\left|\frac{-8}{9}\right|$
$=\frac{|-3|}{|5|}$
$=\frac{|-8|}{|9|}$
$=\frac{3}{5}$
$=\frac{8}{9}$
(iii) $\left|\frac{4}{11}\right|$
$=\frac{|4|}{|11|}$
$=\frac{4}{11}$

Multiple Choice Questions 2

1. Option A is correct.

When $\frac{4}{7}$ is subtracted from $-\left(\frac{2}{5}\right)$ we get $\left(-\frac{34}{35}\right)$.
2. Option B is correct.

The values of the numbers increase as we move from left to right.
3. Option D is correct.

Set of irrational numbers is not contained in the set of rational numbers.
4. Option B is correct.

Subtraction is not commutative for example 4-2 $=2-4$
5. Option B is correct.

By converting the fractions in equivalent fractions, we get the correct answers.
6. Option C is correct because absolute value of a negative number is positive.

Decimal Numbers

Exercise 3

Helpful Hint

- To convert a common fraction into an decimal fraction, we find and equivalent fraction with denominator having power of 10.
- To convert a percentage into fraction, first convert the percentage into a fraction with denominator 100, then convert the fraction into decimal numbers.
- To convert a decimal number into a fraction, the denominator has power of 10, depending on the number of digits.

1. (i)
0.5
(ii) 0.23
(iii) 40%
(iv) $\frac{219}{100}$
(v) recurring

100
(v) recurring
2. (i) True: $0.5=\frac{5 \times 10}{10 \times 10}=\frac{50}{100}$
(ii) False: The denominator has power 1 to 10 , so decimal point will be after one digit from right.
(iii) True: $345 \%=\frac{345}{100}=3.45$
(iv) False: A rational number gives a terminating decimal if its denominator is 2,5 or 2 and 5.
(v) True: The tenth place is greater than 5 so the number will be rounded up to 24 .
3. (i) (c)
(ii) (a)
(iii) (d)
(iv) (b)
4. (i) 3.1276

Correct to the nearest whole number
(3). 1276

Helpful Hint

$1 \angle 5$; drop all the digits after decimal
$3.1276 \approx 3$

Correct to one decimal places

3.(1) 276
, -- Helpful Hint
$2 \angle 5$; drop all the digits to the right of 1
$3.1276 \approx 3.1$
Correct to two decimal places
3.1 (2) 76
,--S Helpful Hint
$7>5$; add 1 to 2 and drop all the digits , after 2
$3.1(2) 76 \approx 3.13$
Correct to three decimal places
$3.12(7) 6$
Helpful Hint
$6>5$; add 1 to 7 and drop next digit.
$3.1276 \approx 3.128$
Follow the hints given in (i) to solve (ii), (iii), (iv) and (v).
(ii) 312.76

Correct to the nearest whole number
(312. $76 \approx 313$

Correct to one decimal place
312. (7) $6 \approx 312.8$

Correct to two decimal places
$312.76 \approx 312.76$
Correct to three decimal places
$312.76 \approx 312.760$
(iii) 1.00125

Correct to the nearest whole number $1.00125 \approx 1$
Correct to one decimal place
$1.00125 \approx 1.0$
Correct to two decimal place
$1.00125 \approx 1.00$
Correct to three decimal place $1.00125 \approx 1.001$
(iv) 0.0125

Correct to the nearest whole number $0.0125 \approx 0$
Correct to one decimal places $0.0125 \approx 0$
Correct to two decimal places $0.0125 \approx 0.01$
Correct to three decimal places
$0.0125 \approx 0.013$
(v) 0.00125

Correct to the nearest whole number
$0.00125 \approx 0$
Correct to one decimal place
$0.00125 \approx 0$
Correct to two decimal places
$0.00125 \approx 0$
Correct to three decimal places
$0.00125 \approx 0.001$
5. (i) 29. 06
$0<5$; drop 0 and 6
2.9. $06 \approx 29$
(ii) 210.53)
$210.5(3) \approx 210.53$
(iii) 0.826
$2<5$
$0.826 \approx 0.8$
(iv) 112.9 9 9
$9>5$
112.9(9)9 9113
(v) 37.678
$6>5$; add 1 to 7 and drop 6, 7, and 8
3(7). $678 \approx 38$
(vi) 416.595

Next digit to 9 is 5 ; add 1 to 9 and drop 5
$416.595 \approx 416.6$
(vii) 4.58(4)67
$6>5$; add 1 to 4 ; drop 6 and 7
4.58(4)67 ≈ 4.585
(viii) 7.91(6)59

Next digit to 6 is 5 ; add 1
7.91 (6) $59 \approx 7.917$
(ix) 3.5(4)545

Next digit to 4 is 5; add 1 to 4 and drop all to right)
3.5 (4) $545=3.55$
6. (i) 0.1
(ii) $\frac{1 \times 2}{5 \times 2}$
$=\frac{2}{10}$
$=0.2$
(iii) $\frac{1 \times 2}{50 \times 2}$
$=\frac{2}{100}$
$=0.02$
(iv) $\frac{1 \times 5}{20 \times 5}$

$$
\begin{aligned}
& =\frac{5}{100} \\
& =0.05
\end{aligned}
$$

(v) $\frac{1 \times 4}{s 25 \times 4}$

$$
\begin{aligned}
& =\frac{4}{100} \\
& =0.04
\end{aligned}
$$

(vi) $\frac{1 \times 25}{40 \times 25}$

$$
\begin{aligned}
& =\frac{25}{1000} \\
& =0.025
\end{aligned}
$$

(vii) $\frac{3 \times 25}{4 \times 25}$

$$
=\frac{75}{100}
$$

$$
=0.75
$$

(viii) $\frac{2 \times 2}{5 \times 2}$

$$
\begin{aligned}
& =\frac{4}{10} \\
& =0.4
\end{aligned}
$$

7. (i)

$$
\begin{gathered}
0.4 \\
5 \begin{array}{r}
20 \\
-20 \\
\hline \times x
\end{array}
\end{gathered}
$$

$$
\frac{2}{5}=0.4
$$

$$
\frac{3}{30}=0.1
$$

$$
\text { (iii) } \begin{array}{r}
0.68 \\
25 \begin{array}{r}
\frac{170}{200} \\
\frac{-150}{200} \\
\frac{-200}{\times \times \times} \\
\frac{17}{25}
\end{array}=0.68
\end{array}
$$

(iv)

$$
\begin{aligned}
& 5 \begin{array}{l}
3.4 \\
\frac{17}{\frac{-15}{20}} \\
\frac{-20}{\times \times}
\end{array} \\
& \frac{17}{5}=3.4
\end{aligned}
$$

(v) $-\frac{5}{8}$

$$
\begin{gathered}
8 \begin{array}{|c}
500.625 \\
-48 \\
20 \\
\frac{-16}{40} \\
\frac{-40}{x x}
\end{array}
\end{gathered}
$$

$$
-\frac{5}{8}=-0.625
$$

(vi) $-\frac{18}{125}$

$$
125 \begin{gathered}
0.144 \\
\begin{array}{c}
180 \\
-\frac{125}{550} \\
\frac{-500}{500} \\
\hline
\end{array} \\
\frac{-500}{x \times x}
\end{gathered}
$$

$$
-\frac{18}{125}=-0.144
$$

8. (i) $\frac{13}{4}$

The denominator $4=2 \times 2$. The prime factors of the denominator are all 2 s .
$\therefore \frac{13}{4}$ can be written as terminating decimal.
(ii) $\frac{5}{80}$

The denominator $80=2 \times 2 \times 2 \times 2 \times$ 5. The prime factors are $2 s$ and 5 .
$\therefore \frac{5}{80}$ is a terminating decimal.
(iii) $\frac{-13}{15}$

The denominator $15=3 \times 5$. One of the factors is 3.
$\therefore \frac{13}{15}$ is not a terminating decimal.
(iv) $\frac{5}{7}$

The factors of 7 are 7 and 1 which are other than 2 or 5 .
$\therefore \frac{5}{7}$ is not a terminating decimal.
(v) $-\frac{2}{3}$

The factors of denominator are $3=3 \times$

1. One of the factors is 3 .
$\therefore \quad-\frac{2}{3}$ is not a terminating decimal.
(vi) $-\frac{3}{125}$

The factors of 125 are $5 \times 5 \times 5$.
$\therefore-\frac{3}{125}$ is a terminating decimal.
9. (ii) $\frac{3}{7}$

The factor of $7=7 \times 1$, which are not 2 or 5 .
$\therefore \frac{3}{7}$ is not a terminating decimal.
(iii) $\frac{-17}{3}$

The factors of 3 are 3×1.
$\therefore \frac{-17}{3}$ is not a terminating decimal.
(iv) $\frac{-8}{15}$

The denominator $15=3 \times 5$.
$\therefore-\frac{8}{15}$ is not a terminating decimal.
(v) $\frac{1}{14}$

The denominator $14=2 \times 7$.
$\therefore \frac{1}{14}$ is not a terminating decimal.
(viii) $\frac{7}{11}$

The denominator $11=11 \times 1$
$\therefore \frac{7}{11}$ is not a terminating decimal.
10. (i) 0.25
$=\frac{25^{1}}{100^{4}}$
$=\frac{1}{4}$
(ii) 0.007
$=\frac{7}{1000}$
(iii) 5.04

$$
\begin{array}{r}
126 \\
=\begin{array}{r}
504 \\
\hline 100 \\
25 \\
= \\
\hline 126 \\
\hline 25
\end{array}, ~
\end{array}
$$

(iv) 0.0095

(v) $\frac{4.33}{0.05}$

$$
\begin{aligned}
& =\frac{433 \times 100}{5 \times 100} \\
& =\frac{433}{5}
\end{aligned}
$$

(vi) $\frac{0.0099}{4.95}$

$$
=\frac{1}{500}
$$

(vii) $\frac{1.2144}{0.012}$

$$
\begin{aligned}
& \frac{1012506}{12144 \times 1000} \\
= & \frac{1 Z_{1} \times 10000}{10_{5}} \\
= & \frac{506}{5}
\end{aligned}
$$

11. (i) $\frac{2}{3}$
0.666

30
-18
20

$\begin{array}{r}-18 \\ \hline 20\end{array}$
$\begin{array}{r}-18 \\ \hline 2\end{array}$

$$
\frac{2}{3}=0 . \dot{6}
$$

(ii) $\frac{3}{11}$

$$
\begin{aligned}
& =\frac{\begin{array}{c}
14^{1} \\
99 \times 100 \\
495 \times 10000
\end{array}}{\text { 年 }} \\
& 55
\end{aligned}
$$

(iii) $2 \frac{3}{7}$

$$
2.428571
$$

$$
7 \longdiv { 1 7 }
$$

$$
\frac{-14}{20}
$$

$$
30
$$

$$
\frac{-28}{70}
$$

$$
\frac{20}{20}
$$

$$
\frac{-14}{60}
$$

$$
\frac{-56}{40}
$$

$$
\frac{-35}{50}
$$

$$
\frac{-49}{10}
$$

$$
\frac{-7}{3}
$$

$2 \frac{3}{7}=2 . \dot{4} 2857 \dot{1}$
(iv) $10 \frac{8}{11}$
changing the fractional part into decimal

$\sqrt[11]{0.7272}$| $\frac{70}{30}$ |
| :--- |
| $\frac{-22}{80}$ |
| $\frac{-77}{30}$ |
| $\frac{-22}{10^{8}}$ |

$\frac{8}{11}=10.7 i$

$$
\begin{aligned}
& \begin{array}{l}
0.2727 \\
\begin{array}{c}
30 \\
-22
\end{array} \\
\hline
\end{array} \\
& \text {-22 } \\
& 80 \\
& \text {-77 } \\
& 30 \\
& -22 \\
& 80 \\
& \begin{array}{r}
-77 \\
3
\end{array} \\
& \frac{3}{11}=0 . \ddot{2}
\end{aligned}
$$

(v) $\frac{4}{333}$
0.012012

$\frac{400}{}$
$\frac{-333}{670}$
$\frac{-666}{400}$
$\frac{-333}{670}$
$\frac{-666}{4}$

$$
\frac{4}{333}=0 . \dot{0} 1 \dot{2}
$$

(vi) $10 \frac{311}{495}$
changing the fractional part into decimal
$\frac{.658}{\frac{62828}{3110}}$
$\frac{-2970}{1400}$
$\frac{-990}{4100}$
$\frac{-3960}{1400}$
$\frac{-990}{4100}$
-3960
140
$10 \frac{311}{495}=10.6 \ddot{2} \dot{8}$
12. (i) $4 \frac{1}{6}$

$$
\sqrt[6]{\begin{array}{l}
0.166 \\
\frac{-6}{40} \\
\frac{-30}{-36}
\end{array}} \begin{array}{r}
\frac{-40}{\frac{-36}{4}} \\
\hline
\end{array}
$$

$$
4 \frac{1}{6}=4.1 \dot{6}
$$

(ii) $5 \frac{5}{18}$

$$
\begin{array}{r}
.277 \\
\begin{array}{c}
\frac{50}{2} \\
\frac{-36}{140} \\
-126 \\
\hline 140 \\
-126 \\
\hline
\end{array}
\end{array}
$$

$$
5 \frac{5}{18}=5.27
$$

(iii) $6 \frac{16}{33}$

$$
\begin{gathered}
.4848 \\
\sqrt[33]{\frac{132}{280}}
\end{gathered}
$$

$$
-264
$$

$$
160
$$

$$
\frac{-132}{200}
$$

$$
280
$$

$$
\begin{array}{r}
-264 \\
\hline
\end{array}
$$

$$
16
$$

$$
6 \frac{16}{33}=6 . \dot{4} \dot{8}
$$

(iv) $10 \frac{7}{75}$

75
$\begin{aligned} & 0.0933 \\ & \frac{700}{-675} \\ & 250 \\ & \frac{-225}{250} \\ & \frac{-225}{25}\end{aligned}$

$$
10 \frac{7}{75}=10.093
$$

$$
\begin{aligned}
& \text { (v) } 13 \frac{9}{37} \\
& 13 \frac{9}{37}=13.24 \dot{3} \\
& \text { (vi) } 1 \frac{41}{185} \\
& \begin{array}{r}
-1110 \\
\hline 400
\end{array} \\
& \text {-370 } \\
& 300 \\
& \frac{-185}{1150} \\
& \frac{-1110}{40} \\
& \therefore \quad 1 \frac{41}{185}=1.2216^{\circ} \\
& \text { (vii) } 1 \frac{3}{14} \\
& \sqrt[14]{\frac{.214214214}{30}} \\
& 14 \\
& 60 \\
& \begin{array}{r}
-56 \\
\hline 40
\end{array} \\
& -28 \\
& \begin{array}{r}
-14 \\
-60
\end{array} \\
& \begin{array}{l}
\frac{60}{-56} \\
-40
\end{array} \\
& 40 \\
& 20 \\
& -14 \\
& 60 \\
& \begin{array}{r}
-56 \\
\hline 4
\end{array} \\
& \therefore \quad 1 \frac{3}{14}=1 . \dot{2} 14 \\
& \text { (viii) } \frac{40}{41} \\
& \therefore \quad \frac{40}{41}=0 . \dot{9} 7560^{\circ}
\end{aligned}
$$

(ix) $90 \frac{5}{11}$
.4545
$\sqrt[11]{\frac{50}{60}}$

60
-55 50 -44

60 $-\frac{55}{5}$
$\therefore \quad 90 \frac{5}{11}=90 . \ddot{4} \dot{5}$
(x) $6 \frac{6}{7}$
$7 \begin{gathered}.857142 \\ \frac{60}{\frac{-56}{40}}\end{gathered}$ $\begin{array}{r}-35 \\ \hline 50\end{array}$ -49

10 $\frac{7}{30}$ -28 20
-14
6

$$
\therefore \quad 6 \frac{6}{7}=6 . \dot{8} 5714 \dot{2}
$$

13.

14.

Helpful Hint

On a number line, negative numbers lie on the left of zero and positive number lie on the right of zero.

- When we compare numbers and order them on a number line, the number increases as we move to the right and decreases as we move towards left.

Taking the help from given hint, arrange $6.7,4.3,8.01,-4.5,0.7,-1.1,-3.8$ in ascending order on a number line given below.

Hence, the ascending order is $-4.5,-3.8,-1.1,4.3,67,8.01$

Multiple Choice Questions 3

1. Option B is correct.

To round off 35.6 , check the digit next to whole number i.e. 35 . Next digit is $6,6 \Delta 5$, take. 6 as 1 and add to 35.
$35.6=36$
2. Option C is correct because denominator $10=2 \times 5$ i.e a multiple of 2 and 5 .
3. Option A is correct. 47 is appearing repeatedly.
4. Option B is correct, because digit at fourth decimal place is $6 ; 6 \Delta 5$, then 1 will be added to 5.
5. Option D is correct, the denominator of the fraction is not a multiple of 2 and 5 .
6. Option D is correct.
7. Option B is correct.
$\frac{15}{8}=15 \div 8=1.875$
8. Option C is correct. Find the sum of two numbers and subtract from 100.
9. Option A is correct.
$2.33 \times 5.66=13.1878 \approx 13.188$ (rounded off to 3 decimal places)

Squares and Square Roots

Exercise 4

1.

Helpful Hint

Square of a number is obtained by multiplying the number with itself.

Fill in the blanks
(i) $0.5 \times 0.5=0.25$
(ii) $\sqrt{100}=\sqrt{10 \times 10}=10$
(iii) 5
$125 \times 5=625$ is the perfect square of 25.
(iv) two

(v) $\left(\frac{4}{3}\right)^{2}=\frac{16}{9}$
2.
$=\frac{4}{3} \times \frac{4}{3}$
Helpful Hint
' To find the square of a rational number we find the square of numerator and square l of denominator separately.
(i) False, because 500 is half of 1000 .
(ii) False, because a perfect square can not have only on zero at ones place. It must have even number of zeros.
(iii) True, because 5×5 has 5 on its ones place.
(iv) True, They are $1,4,9,16,25,36,49$, 64, 81, 100
(v) False, because square root of 15 is less than square root of 16 . Hence, it is less than 4.
3. (i) Square of $19=19 \times 19$

$$
=361
$$

(ii) Square of $27=27 \times 27$

$$
=729
$$

(iii) Square of $35=35 \times 35$ $=1225$
(iv) Square of $41=41 \times 41$

$$
=1681
$$

4. (i)

3	729
3	243
3	81
3	27
3	9
3	3
	1

$\therefore 729=3 \times 3 \times 3 \times 3 \times 3 \times 3$
$=\overline{3 \times 3} \times \overline{3 \times 3} \times \overline{3 \times 3}$
$=3^{2} \times 3^{2} \times 3^{2}$
$\sqrt{729}=\sqrt{3 \times 3 \times 3 \times 3 \times 3 \times 3}$
Helpful Hint
Number from each pair of numbers taken once.

$$
=3 \times 3 \times 3 \text { time }
$$

$$
=27
$$

(ii)

3	1089
3	363
11	121
	11

$\therefore 1089=3 \times 3 \times 11 \times 11$
$=3 \times 3 \times \overline{11 \times 11}$
$=3^{2} \times 11^{2}$
$\therefore \sqrt{1089}=\sqrt{3^{2} \times 11^{2}}$
$=\sqrt{3 \times 3 \times 11 \times 11}$
$=3 \times 11$
$=33$
(iii)

5	1225
5	245
7	49
7	7
	1

$\therefore 1225=5 \times 5 \times 7 \times 7$
$=\quad 5^{2} \times 7^{2}$
$\therefore \sqrt{1225}=\sqrt{5 \times 5 \times \overline{7 \times 7}}$
$=5 \times 7$
$=35$
(iv)

2	1764
2	882
3	441
3	147
7	49
	7

$$
\begin{aligned}
\therefore 1764 & =2 \times 2 \times 3 \times 3 \times 7 \times 7 \\
& =2^{2} \times 3^{2} \times 7^{2} \\
\sqrt{1764} & =\sqrt{2 \times 2 \times \overline{3 \times 3} \times 7 \times 7} \\
& =2 \times 3 \times 7 \\
& =42
\end{aligned}
$$

(v)

2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

$\therefore 256=\overline{2 \times 2} \times \overline{2 \times 2} \times \overline{2 \times 2} \times \overline{2 \times 2}$
$=2^{2} \times 2^{2} \times 2^{2} \times 2^{2}$
$\sqrt{256}=\sqrt{2^{2} \times 2^{2} \times 2^{2} \times 2^{2}}$
$\sqrt{256}=\sqrt{2 \times 2} \times \overline{2 \times 2} \times \overline{2 \times 2} \times \overline{2 \times 2}$
$=2 \times 2 \times 2 \times 2$
$=16$
(vi)

3	441
3	147
7	49
7	7
	1

$\therefore 441=3 \times 3 \times 7 \times 7$

$$
\begin{aligned}
& =3^{2} \times 7^{2} \\
\sqrt{441} & =\sqrt{3 \times 3 \times 7 \times 7} \\
& =3 \times 7 \\
& =21
\end{aligned}
$$

(vii)

19	361
19	19
	1

Helpful Hint

Prime numbers have only 2 factors, 1 and , the number itself.

$$
\begin{aligned}
\therefore 361 & =\overline{19 \times 19} \\
& =19^{2} \\
\sqrt{361} & =\sqrt{19^{2}} \\
& =\sqrt{19 \times 19} \\
& =19
\end{aligned}
$$

(viii)

2	400
2	200
2	100
2	50
5	25
5	5
	1

$\therefore 400=\overline{2 \times 2} \times \overline{2 \times 2} \times \overline{5 \times 5}$
$=2^{2} \times 2^{2} \times 5^{2}$
$\sqrt{400}=\sqrt{\overline{2^{2} \times 2^{2} \times 5^{2}}}$
$=\sqrt{2 \times 2 \times \overline{2 \times 2 \times \overline{5 \times 5}}}$
$=2 \times 2 \times 5$
$=20$

Helpful Hint

'To find the square root of decimal number, convert the number into fraction and take the square root of number and denominator separately.
5. (i) 56.25

$$
=\frac{5625}{100}
$$

Taking the square root of numerator and denominator separately.
$\sqrt{56.25}=\sqrt{\frac{5625}{100}}$
$\sqrt{5625}=\sqrt{3 \times 3 \times \overline{5 \times 5} \times \overline{5 \times 5}}$
By prime factorisation

$$
\begin{aligned}
=3 \times 5 & \times 5 \\
\sqrt{5625} & =75 \\
\text { Now } \sqrt{100} & =\sqrt{10 \times 10}=10 \\
\sqrt{100} & =10 \\
\therefore \sqrt{56.25} & =\frac{75}{10} \\
& =7.5
\end{aligned}
$$

(ii) 10.24

$$
\begin{aligned}
& =\frac{1024}{100} \\
& \sqrt{10.24}=\sqrt{\frac{1024}{\sqrt{100}}}
\end{aligned}
$$

Taking require root of numerator and denominator separately.

$$
\begin{aligned}
\cdot \sqrt{1024} & =\sqrt{2^{2} \times 2^{2} \times 2^{2} \times 2^{2} \times 2^{2}} \\
& =2 \times 2 \times 2 \times 2 \times 2 \\
& =32 \\
& \sqrt{100}=\sqrt{10 \times 10}=10 \\
& \sqrt{\frac{1024}{\sqrt{100}}}=\frac{32}{10} \\
& =3.2
\end{aligned}
$$

Hence,
$\sqrt{10.24}=3.2$
(iii) $\frac{225}{169}$

$$
\begin{aligned}
& \sqrt{\frac{225}{169}}=\sqrt{\frac{225}{\sqrt{169}}}=\sqrt{\frac{3 \times 3 \times \overline{5 \times 5}}{\sqrt{13 \times 13}}} \\
& =\frac{3 \times 5}{13}=\frac{15}{13}
\end{aligned}
$$

(iv)
$\frac{324}{121}$

$$
\begin{aligned}
& \sqrt{\frac{324}{121}}=\sqrt{\frac{324}{\sqrt{121}}=\sqrt{\frac{2 \times 2 \times \overline{3 \times 3} \times 3 \times 3}{\sqrt{11 \times 11}}}} \\
& \frac{324}{121}=\frac{2 \times 3 \times 3}{11} \\
& =\frac{18}{11}
\end{aligned}
$$

6.

2	21168
2	10584
2	5292
2	2646
3	1323
3	441
3	147
7	49
	7

$\therefore 21168=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 7 \times 7$
2 , and 7 appear in pairs; 3 has a pair and one 3 is single.
$\therefore 2118$ must be divided by 3 to become a perfect square i.e.
$21168 \div 3=7056$ is a perfect square of 84 .
7. Number of soldiers $=1545$

Having formed a square formation 24 soldiers were left.
$1545-24=1521$
Now find $\sqrt{1521}$

$$
\begin{aligned}
\sqrt{1521} & =\sqrt{3 \times 3 \times \overline{13 \times 13}} \\
& =3 \times 13 \\
& =39
\end{aligned}
$$

The front row consists of 39 soldiers.
8. To find the number of rows, take square root of 1024 .

$$
\begin{aligned}
\sqrt{1024} & =\sqrt{2^{2} \times 2^{2} \times 2^{2} \times 2^{2} \times 2^{2}} \\
& =2 \times 2 \times 2 \times 2 \times 2 \\
& =32
\end{aligned}
$$

There are 32 rows of trees.
9. Taking the square root of 529.

23	529
23	23
	1

$\sqrt{529}=\sqrt{23 \times 23}$
$=23$
23 students are standing in each row.
10. Taking the square root of 324,

2	324
2	162
3	81
3	27
3	9
3	3
	1

$$
\begin{aligned}
\sqrt{324} & =\sqrt{2 \times 2 \times \overline{3 \times 3} \times \overline{3 \times 3}} \\
& =\sqrt{2^{2} \times 3^{2} \times 3^{2}} \\
& =2 \times 3 \times 3 \\
& =18
\end{aligned}
$$

The length of each side $=18 \mathrm{~m}$.
11. Taking the square root of 6400 ,

2	6400
2	3200
2	1600
2	800
2	400
2	200
2	100
2	50
5	25
5	5
	1

$$
\begin{aligned}
\sqrt{6400} & =\sqrt{2 \times 2 \times \overline{2 \times 2} \times \overline{2 \times 2} \times \overline{2 \times 2} \times \overline{5 \times 5}} \\
\sqrt{6400} & =\sqrt{2^{2} \times 2^{2} \times 2^{2} \times 2^{2} \times 5^{2}} \\
& =2 \times 2 \times 2 \times 2 \times 5 \\
& =80
\end{aligned}
$$

\therefore Length of the side of the table $=80 \mathrm{~cm}$
12. First, we find the factors of 216.

2	216
2	108
2	54
3	27
3	9
3	3
	1

$\therefore \quad 216=\overline{2 \times 2} \times 2 \times 3 \times \overline{3 \times 3}$
We see that 2×3 do not appear in pair.
216 must be divided by 2×3 i.e. 6 to become a perfect square
$\therefore \quad 216 \div 6=36=6^{2}$
13. We will find the square of 25 .

$$
\begin{aligned}
\therefore \quad(25)^{2} \quad & =25 \times 25 \\
& =625
\end{aligned}
$$

There are 625 plants.

Multiple Choice Question 4

1. Option B is correct.

A, C, and D are incorrect options because unit pairs.
2. Option A is correct.
B, C, and D are perfect square because they all have factors in pairs.
3. Option C is correct.
A, B, and D are incorrect options; the square root of 49 is 7 .
4. Option B is correct.

Option A, C and D are incorrect because square of these numbers do not have 4 at their unit place 2 or 8 have 4 their unit place.
5. Option A is correct.

Option B, C, and D are incorrect. Square of these numbers do not have 4 at their unit place.
6. Option D is correct.

Option A, B, and C are incorrect because A is a whole number which can not be a square root of a decimal number. B and C on squaring will give 4 decimal and 6 decimal numbers which are incorrect.
7. Option B is correct.

Option A, C, and D are incorrect:
$1.7 \times 34 \times 0.8=46.24$
The square root of 46.24 should have one decimal place.
8. Option C is correct
$17 \times 17=289$

Revision 1: Numbers

1. (i) $-\frac{5}{8}=-\frac{5 \times-3}{8 \times-3}=\frac{15}{-24}$
(ii) $-\frac{5 \times-7}{8 \times-7}=\frac{35}{-56}$
2.

Helpful Hint:
Smaller number is always on the left of a greater number on a number line.
(i) $-\frac{1}{3}$ and $\frac{1}{4}$
$-\frac{1}{3}$ is on the left of $\frac{1}{4}$ on the number line, because $-\frac{1}{3}<\frac{1}{4}$
(ii) $\frac{3}{5}$ and $\frac{5}{7}$
$\frac{3}{5} \times \frac{7}{7}=\frac{21}{35}$ and $\frac{5 \times 5}{7 \times 5}=\frac{25}{35}$
$\frac{25}{35}>\frac{21}{35}$
$\therefore \quad \frac{3}{5}<\frac{5}{7}$
$\frac{3}{5}$ is on the left of $\frac{5}{7}$
(iii) $\frac{6}{7}$ and $\frac{3}{4}$
$\frac{6 \times 4}{7 \times 4}=\frac{24}{28}$ and $\frac{3 \times 7}{4 \times 7}=\frac{21}{28}$
$\frac{21}{28}<\frac{24}{28}$
$\frac{3}{4}<\frac{6}{7}$
$\frac{3}{4}$ is on the left of $\frac{6}{7}$,
(iv) $\frac{4}{9}$ and $\frac{6}{11}$
$\frac{4 \times 11}{9 \times 11}=\frac{44}{99}$ and $\frac{6 \times 9}{11 \times 9}=\frac{54}{99}$
$\frac{44}{99}<\frac{54}{99}$
$\frac{4}{9}<\frac{6}{11}$
$\therefore \quad \frac{4}{9}$ is on the left of $\frac{6}{11}$
3. (i) $\frac{2}{3}$ and $\frac{4}{7}$

Express $\frac{2}{3}$ and $\frac{4}{7}$ as rational numbers with a common denominator.
$\frac{2}{3}=\frac{2 \times 7}{3 \times 7}=\frac{14}{21}$
$\frac{4}{7}=\frac{4 \times 3}{7 \times 3}=\frac{12}{21}$
Now $14>12$
$\therefore \frac{14}{21}>\frac{12}{21}$
or $\frac{2}{3}>\frac{4}{7}$
Hence, $\frac{2}{3}$ is greater.
(ii) $\frac{5}{7}$ and $\frac{7}{10}$

Express $\frac{5}{7}$ and $\frac{7}{10}$ as rational numbers with a common denominator.
$\frac{5 \times 10}{7 \times 10}=\frac{50}{70} ; \frac{7 \times 7}{10 \times 7}=\frac{49}{70}$
Now 50 > 49

$$
\begin{array}{ll}
\therefore & \frac{50}{70}>\frac{49}{70} \\
\text { or } & \frac{5}{7}>\frac{7}{10}
\end{array}
$$

Hence, $\frac{5}{7}$ is greater.
(iii) $-\frac{4}{5}$ and $-\frac{7}{9}$

Express $-\frac{4}{5}$ and $\frac{-7}{9}$ as rational numbers with a common denominator.

$$
\begin{aligned}
&-\frac{4 \times 9}{5 \times 9}=-\frac{36}{45} \\
&-\frac{7 \times 5}{9 \times 5}=-\frac{35}{45} \\
&-36<-35
\end{aligned}
$$

$\therefore \frac{-36}{45}<\frac{-35}{45}$
or $\frac{-4}{5}<\frac{-7}{9}$
or $-\frac{4}{5}<-\frac{7}{9}$
or $-\frac{7}{9}>-\frac{4}{5}$
Hence, $-\frac{7}{9}$ is greater.
4.

Helpful Hint:
' The middle value of two rational numbers
! is the mean value of the numbers.

To find the middle value we find the mean value of the given number as following

$$
\begin{aligned}
& \frac{1}{2}+\frac{3}{4}=\frac{2+3}{4}=\frac{5}{4} \\
& \frac{5}{4} \div 2=\frac{5}{8} \text { first middle number }
\end{aligned}
$$

Now to find another middle value we proceed.
$\frac{5}{8}+\frac{3}{4}=\frac{5+6}{8}=\frac{11}{8}$
$\frac{11}{8} \div 2=\frac{11}{16}$ second middle number
5. (i) Correct

Reason: All integers can be expressed as $\frac{a}{b}$ where a and b are integers and $b \neq 0$
(ii) Correct

Zero is an integer and all integers are rational numbers.
(iii) Incorrect

There are many rational number (or fractional number between two consecutive integers).
(iv) Correct
(v) Incorrect
$\frac{p}{q}$ is a rational number if $\mathrm{q} \neq 0$
6. Sum of two rational number $=\frac{4}{5}$

One of the number $=-\frac{3}{4}$
The other number $=\frac{4}{5}-\left(\frac{-3}{4}\right)$
$=\frac{4}{5}+\frac{3}{4}$
$=\frac{16+15}{20}$
$=\frac{31}{20}$
$\therefore \quad$ The other number is $\frac{31}{20}$
7. The required number $=-\frac{3}{4}-\frac{3}{7}$

$$
\begin{aligned}
& =\frac{-21-12}{28} \\
& =-\frac{33}{28}
\end{aligned}
$$

8. The required number $=\frac{-1}{2}-\frac{3}{4}$

$$
\begin{aligned}
& =\frac{-4-6}{8} \\
& =-\frac{10}{8} \\
& =-\frac{5}{4}
\end{aligned}
$$

$\therefore \quad$ The required number is $-\frac{5}{4}$
9.

```
Helpful Hint:
Converting rational numbers in decimal
numbers becomes easy if denominator is
converted into powers of 10
(i) \(\frac{31}{100}=0.31\)
(since denominator is \(10 \times 10\). So the decimal point will be after two digits form right).
(ii) \(\frac{54}{250}\)
\(=\frac{54 \times 4}{250 \times 4}\)
\(=\frac{216}{1000}\)
\(=0.216\)
```

(iii) $\frac{26}{125}$

$$
\begin{aligned}
& =\frac{26 \times 8}{125 \times 8} \\
& =\frac{208}{1000} \\
& =0.208
\end{aligned}
$$

(iv) $\frac{39}{50}$

$$
\begin{aligned}
& =\frac{39 \times 2}{50 \times 2} \\
& =\frac{78}{100} \\
& =0.78
\end{aligned}
$$

10. (i) $\frac{7}{9}$ or $\frac{7}{90}$

Helpful Hint:
Make the denominators same, by using equivalent fractions.

$$
\begin{aligned}
\therefore \frac{7}{9} & =\frac{7 \times 10}{9 \times 10} \\
& =\frac{70}{90}
\end{aligned}
$$

Now, we have $\frac{70}{90}, \frac{7}{90}$

$$
\frac{70}{90}>\frac{7}{90}
$$

Hence, $\frac{7}{9}>\frac{7}{90}$
(ii) $\frac{3}{2}$ or $\frac{4}{3}$

Making the denominators same, we have,

$$
\begin{aligned}
& \frac{3}{2}=\frac{3 \times 3}{2 \times 3}=\frac{9}{6} \\
& \frac{4}{3}=\frac{4 \times 2}{3 \times 2}=\frac{8}{6}
\end{aligned}
$$

Now, we have
$\frac{9}{6}, \frac{8}{6}$
$\frac{9}{6}>\frac{8}{6}$
Hence, $\frac{3}{2}>\frac{4}{3}$
11. (i) $\sqrt{2401}=\sqrt{7 \times 7 \times \overline{7 \times 7}}$
$=\sqrt{7^{2} \times 7^{2}}$
$=7 \times 7$
$\therefore \sqrt{2401}=49$
(ii) 38.44

$$
38.44=\frac{3844}{100}
$$

Taking square roots of numerator and denominator,

$$
\begin{aligned}
\sqrt{3844} & =\sqrt{2 \times 2 \times \overline{31 \times 31}} \\
& =2 \times 31 \\
& =62 \\
\sqrt{100} & =\sqrt{10 \times 10}=10 \\
\sqrt{\frac{3844}{100}} & =\frac{62}{10}
\end{aligned}
$$

Hence, $\sqrt{38.44}=6.2$
(iii) $\frac{441}{625}$

$$
\begin{aligned}
\sqrt{441} & =\sqrt{3 \times 3 \times \overline{7 \times 7}} \\
\therefore & =3 \times 7 \\
\sqrt{441} & =21 \\
\text { Now } \sqrt{625} & =\sqrt{\overline{5 \times 5} \times \overline{5 \times 5}} \\
& =5 \times 5 \\
\therefore \sqrt{625} & =25 \\
\sqrt{\frac{441}{625}} & =\frac{21}{25}
\end{aligned}
$$

(iv) $361=19 \times 19$

$$
\begin{aligned}
\sqrt{361} & =\sqrt{19 \times 19} \\
& =19 \\
\therefore \sqrt{361} & =19
\end{aligned}
$$

12. Finding the prime factors of 3615

3	3675
5	1225
5	245
7	49
7	7
	1

$\therefore 3675=3 \times \overline{5 \times 5} \times \overline{7 \times 7}$
$\therefore 5$ and 7 are pairs, but 3 can not be paired. Squared numbers always have pairs of factors, so, if 3675 is divided by 3 we get 1225 which is square of 35 .
13. (i)

$$
\text { (i) } \begin{aligned}
& 4 \frac{1}{2} \times 3 \frac{2}{3} \div \frac{11}{18}-\frac{2}{3} \\
& =\frac{9}{2} \times \frac{11}{3} \div \frac{11}{18}-\frac{2}{3} \\
& =\frac{9^{3}}{2_{1}} \times \frac{11^{1}}{3_{1}} \times \frac{18^{9}}{11_{1}}-\frac{2}{3} \\
& =27-\frac{2}{3} \\
& =\frac{81-2}{3} \\
& =\frac{79}{3} \\
& =26 \frac{1}{3} \\
\text { (ii) } & 4 \frac{3}{4} \times 3 \frac{1}{3}\left(1 \frac{1}{2}-\frac{3}{4}\right) \\
& =\frac{19}{4} \times \frac{10}{3}\left(\frac{3}{2}-\frac{3}{4}\right) \\
& =\frac{19}{4} \times \frac{10}{3}\left(\frac{6-3}{4}\right) \\
& =\frac{19}{4} \times \frac{10^{5}}{3} \times \frac{37}{4} \\
& =\frac{95}{8} \\
& =11 \frac{7}{8}
\end{aligned}
$$

Rate, Ratio, and Proportions

Exercise 5

1. (i) direct
(ii) Rs 800
(iii) decreased
(iv) inverse
(v) $8: 3$
2. (i) True:

The number of items and prices paid are in direct variation with each other. More we buy, the more we pay.
(ii) False: more people will need more food.
(iii) True:

Greater the speed, longer will be the distance covered.
(iv) False: He will plant 10 saplings in 5 hours.
(v) True: Half distance will take half of the time.
3. (i) Direct variation

If the number of pencils are more, the cost will be more.
If the number of pencils are less, the cost will be less.
(ii) Inverse variation

More number of men will complete the job in less number of days.
Less number of men will complete the job in more number of days.
(iii) Inverse variation

The greater the speed, lesser will be the tim, e taken to cover a given distance.
Similarly the lesser the speed, longer will be the time taken to cover the given distance.
(iv) Direct variation

When a car is moving at a constant speed, the distance covered will depend on time taken. A greater distance will be covered in longer time.
4. (i) Let the new quantity be x.

New quantity: Old quantity $=5: 3$

$$
\begin{aligned}
x: 9 & =5: 3 \\
\frac{x}{9} & =\frac{5}{3} \\
x & =\frac{5}{3} \times 9^{3} \\
& =15
\end{aligned}
$$

\therefore the new increased quantity is 15 .
(ii) Let the new quantity be x. We write,

New quantity: Old quantity $=5: 18$
$x: 72=5: 18$

$$
\begin{aligned}
\frac{x}{72} & =\frac{5}{18} \\
x & =\frac{5}{18} \times 72^{4} \\
& =20
\end{aligned}
$$

\therefore the new decreased quantity is 20 .
(iii) Let the new quantity be x. We write, New quantity: Old quantity $=5: 2$
$x: 25=5: 2$
$\frac{x}{25}=\frac{5}{2}$
$x=\frac{5}{2} \times 25$
$x=\frac{125}{2}$
$x=62.5 \mathrm{~kg}$
\therefore the new increased quantity is 62.5 kg .
(iv) Let the new quantity be x. We write, New quantity: Old quantity $=7: 11$
$x: 110=7: 11$
$\frac{x}{110}=\frac{7}{11}$
$x=\frac{7 \times 110^{10}}{11}$
$x=70 \mathrm{~km}$
\therefore the new decreased quantity is 70 km .
5.

Tickets	Cost (Rs)
10	200
25	x
10	$\underline{200}$
25	x
$10 x=$	200×25
x	200 225

The cost of 25 tickets is Rs 500.
6. Length (m): increase in length (cm)

$$
\begin{array}{rl}
5 & 1500 \\
x & 15000 \\
\frac{5}{x} & =\frac{1500}{15000} \\
1500 x & =15000 \times 5 \\
x & =\frac{15000 \times 5}{1500} \\
& =50
\end{array}
$$

50 metres cloth can be bought in Rs 15,000
7. Mass (kg) Increase in length (cm)

$$
\begin{array}{rl}
50 & : 2.5 \\
x & 7.5 \\
\frac{50}{x} & =\frac{2.5}{7.5} \\
2.5 \times x & =7.5 \times 50 \\
x & =\frac{7.5 \times 50}{2.5} \\
& =150
\end{array}
$$

150 kg will produce an increase of 7.5 cm .
8.

Commission (Rs) : Worth (Rs)

200	2000
x	30,000

$$
\frac{200}{x}=\frac{2000}{30000}
$$

$$
x=\frac{30000 \times 200}{2000_{4 \theta}}
$$

$$
=3000
$$

The agent will get the commission of Rs 3000 .
9.

Weight (kg)	$:$	Cost (Rs)
150		3000
x		8500
$\frac{150}{x}$	$=$	$\frac{3000}{8500}$
$3000 \times x$	$=$	8500×150
x	$=$	$\frac{8500 \times 150}{3000}$
x	$=$	425^{20}

$\therefore \quad 425 \mathrm{~kg}$ sugar can be purchased.
10.

$$
\begin{array}{rll}
2.5 \mathrm{~kg}=2500 \mathrm{~g} \\
\text { Sheet of paper } & : & \\
7 & \text { Weight (grams) } \\
x & : & 2800 \\
\frac{7}{x} & = & \frac{28}{2500} \\
28 \times x & = & 2500 \times 7 \\
x & = & \frac{2500 \times 7}{28} \\
& = & 625
\end{array}
$$

625 sheets of paper would weight 2.5 kg
11. Kilometres : Litres
$44 \quad 5$
$x \quad 48$
$\frac{44}{x}=\frac{5}{48}$
$5 \times x=48 \times 44$
$x=\frac{48 \times 44}{5}$
$=\frac{2112}{5}$
The car travels 422.4 km.
12. $1 \mathrm{hr}=3600$ seconds

$\begin{aligned} & \text { Distance }(\mathrm{km}) \\ & 3 \end{aligned}$	$\begin{aligned} & \text { Time (sec) } \\ & 3600 \end{aligned}$
x	18
$3=$	3600
x	18
$x=$	$\begin{gathered} \frac{18^{3} \times 3}{} \frac{3600}{3600} \\ \begin{array}{c} 1200 \\ 200 \end{array} \end{gathered}$
	$\frac{3}{200}$
	$\begin{aligned} & 0.015 \\ & 15 \text { metres } \end{aligned}$

13. There is an inverse variation.

Men	$:$ Days
8	12
24	x
$\frac{8}{24}$	$=\frac{x}{12}$
$24 x$	$=12 \times 8$
x	$=\frac{12^{1} \times 8^{4}}{24_{z}}$

4 days will be required to complete the job.
14. Men : Days

$$
\begin{array}{rl}
6 & 20 \\
x & 15 \\
\frac{6}{x} & =\frac{15}{20} \\
15 x & =\frac{20 \times 6}{} \\
& \frac{20^{4} \times 6^{2}}{15} \\
& =8
\end{array}
$$

8 men will complete the job in 15 days.
6 men are already working.
$\therefore \quad 8-6=2$ extra men should be engaged to get the work done in 15 days.
15.

」 Helpful Hint:
'According to Islamic law of inheritance:
Widow's share $=\frac{1}{8}$ of the property
Son's share $=2 \times$ daughter's share .
Wife's share $=\frac{1}{8} \times 250000$

$$
=\text { Rs } 31250
$$

Amount left for 2 daughters and son
$=\quad$ Rs 250,000 - Rs 31,250
$=\quad$ Rs 218,750
Ratio of son's share to daughters share $=2: 1$
Share of son: Share of daughters

$$
2: 1 \times 2=2
$$

Total number of shares $=2+2=4$

$$
\begin{aligned}
\text { Each share } & =\frac{1}{4} \times 218750 \\
& =\text { Rs } 54687.50
\end{aligned}
$$

$\therefore \quad$ Wife's share $=$ Rs 31250
Son's share $=2 \times 54687.50$

$$
=\text { Rs 109,375 }
$$

Each daughter's = Rs 54,687.50
16. Worth of property = Rs 750,000

Pay off debt = Rs 50,000
Remaining money = Rs 750,000-Rs 50,000

$$
=\text { Rs 700,000 }
$$

Share of son : Share of daughter

$$
2: 1
$$

Sons' share : daughter's share

$$
2 \times 2 \quad: \quad 1
$$

$$
4 \quad: \quad 1
$$

Sum of the ratios $=4+1=5$
$\begin{aligned} \text { Share of daughter } & =\frac{1}{5} \times 700,000 \\ & =\text { Rs } 140,000\end{aligned}$

Share of son $=\frac{2}{5} \times 700,000$
$=$ Rs 280,000

Multiple Choice Questions 5

1. Option B is correct $x=\frac{48 \times 11}{22}=24$
2. Option D is correct $x=\frac{1500}{100}$
3. Option C is correct.

The train is travelling at a speed of $80 \mathrm{~km} / \mathrm{h}$. In one hour it travels 80 km , and in another half hour it will ravel 40 km . The total distance covered in $1 \frac{1}{2} \mathrm{hr}=80+40=120 \mathrm{~km}$.
4.

Helpful Hint:

Increasing a quantity by the ratio $b: a$, where $\mathrm{b}>\mathrm{a}$. We multiply the quantity with $\frac{b}{a}$

Option A is correct.
5. Option D is correct. All the other options are varying directly.
6. Option D is correct. There is an inverse variation.
Number of days $=\frac{52^{4} \times 3^{1}}{39_{1 / 1}}=4$
Options A, B, and C are incorrect.
7. Option B is correct.

Number of toys $=\frac{100 \times 4}{5}=80$
Options A, C, and D are incorrect.
8. Option D is correct.

There is a direct variation between the distance and the time.
Distance travelled in 5 hours
$=\frac{120^{40} \times 2 \times 5}{3_{1}}=400 \mathrm{~km}$.
Options A, B, and C are incorrect.
9. Option D is correct.

The ratio of copper and zinc $=13: 7$
The quantity of Zinc $=\frac{7}{20} \times 600^{30}=210 \mathrm{gm}$
Options A, B, and C are incorrect.
10. Option C is correct.

There is an inverse variation between the number of men and time taken.
Time taken by 3 men $=\frac{2 \times 6}{3}$
Options A, B, and D are incorrect.

Financial Arithmetic

Exercise 6A

1.

- $\mathrm{CP}=$ Rs 850
$\mathrm{P} \%=20 \%$
$\mathrm{P}=170$
Profit $=$ Rs 170
$S P=850+170$
$=1020$
Selling Price $=$ Rs 1020
$P=S P-C P:$
$=560-500$
- $\mathrm{P}=$ Rs 60

$$
\begin{aligned}
P \% & =\frac{60^{12}}{500} \times 100 \% \\
& =12 \%
\end{aligned}
$$

- If CP = Rs $100, \mathrm{~L}=5 \%$, then

SP = Rs 95
CP SP
10095
$x \quad 855$
$95 \times x=855 \times 100$
$x=\frac{855^{9} \times 100}{95}$
$x=900$
$\mathrm{CP}=$ Rs 900
$\mathrm{L}=900-855$
$=$ Rs 45
2. The cost price of 12 pens for Rs 25 each $=12 \times 25=$ Rs 300

The selling price of 12 pens for Rs 28 each $=$ $12 \times 28=$ Rs 336
Profit (P) = SP - CP

$$
=336-300
$$

$$
\text { = RS } 36
$$

$$
P \%=\frac{P}{C P} \times 100 \%
$$

$$
=\frac{36^{12}}{\frac{300_{z}}{1}} \times 10^{1} \sigma \%
$$

$$
=12 \%
$$

$\therefore \quad P=\operatorname{Rs} 36$ and $\% P=12 \%$
3. Cost price of 12 eggs $=$ Rs 9.60

Selling price of 12 eggs $=\frac{18^{9} \times 12}{2 \theta_{10}}$

$$
\begin{aligned}
& =\frac{108}{10}=\text { Rs } 10.80 \\
\text { Gain per dozen } & =\operatorname{Rs} 10.80-\operatorname{Rs} 9.60 \\
& =\operatorname{Rs} 1.20
\end{aligned}
$$

$$
\begin{aligned}
\text { Gain } \% & =\frac{P}{C P} \times 100 \% \\
& =\frac{1.20}{9.60} \times 100^{25} \% \\
& =\frac{25}{2} \% \\
\text { Gain } \% & =12.5 \%
\end{aligned}
$$

4. Cost price of the plot $=$ Rs 108,000

Profit \% = 20\%
Profit $\%=\frac{\text { Profit }}{C P} \times 100 \%$
$20=\frac{P}{108000} \times 100$
$\mathrm{P}=1080 \times 20$
$=$ Rs 21600
$\mathrm{SP}=\mathrm{CP}+\mathrm{P}$
$=$ Rs $108000+21600$
$=$ Rs 129,600
Selling price of the plate
5. \quad SP $=$ Rs 10.68

$$
\text { Loss } \%=11 \%
$$

Let the CP be Rs y.

$$
\begin{aligned}
\text { Loss } \% & =\frac{\text { Loss }}{C P} \times 100 \% \\
11 \% & =\frac{(y-10.68)}{y} \times 100 \% \\
11 y & =100 y-1068 \\
89 y & =1068 \\
y & =\frac{1068^{12}}{89_{1}} \\
y & =\operatorname{Rs} 12
\end{aligned}
$$

$$
\therefore \quad \mathrm{CP} \quad=\operatorname{Rs} 12
$$

To yield a profit of 10%

$$
\begin{aligned}
\mathrm{P} \% & =\frac{\mathrm{P}}{\mathrm{CP}} \times 100 \% \\
10 \% & =\frac{\mathrm{P}}{12} \times 100 \% \\
100 \mathrm{P} & =120 \\
\mathrm{P} & =\frac{120}{100}=\text { Rs } 1.20 \\
\mathrm{SP} & =\mathrm{CP}+\mathrm{P} \\
& =12+1.20 \\
& =\text { Rs. } 13.20 \\
\mathrm{CP} & =\text { Rs } 12 ; \mathrm{SP} \text { at } 10 \% \text { profit }=\text { Rs } 13.20
\end{aligned}
$$

6. $\mathrm{SP}=\mathrm{Rs} 48$ per kg
$\mathrm{P} \%=20 \%$
Total gain $=$ Rs 90

$$
P \%=\frac{P}{C P} \times 100 \%
$$

$$
20 \%=\frac{90}{C P} \times 100 \%
$$

$$
C P=\frac{90 \times 100^{5}}{z \theta_{1}}
$$

$$
C P=\text { Rs } 450 \text {; cost of total quantity of tea. }
$$

$$
S P=P+C P
$$

$$
=90+450=\operatorname{Rs} 540
$$

Now, Rs 48 is SP of 1 kg

$$
\begin{aligned}
& \text { Rs } 540 \text { is } \mathrm{SP} \text { of } \frac{540}{48} \mathrm{~kg} \\
& =11.25 \mathrm{~kg}
\end{aligned}
$$

Hence; 11.25 kg tea was sold.
7. Let $\mathrm{CP}=\operatorname{Rs} x$
$\mathrm{SP}=$ Rs 1475

$$
\begin{array}{ll}
\text { Loss } \% & =\frac{\text { Loss }}{C P} \times 100 \% \\
\text { Loss } \% & =13 \%
\end{array}
$$

$$
\therefore \quad 13 \%=\frac{x-1475}{x} \times 100 \%
$$

$$
13=\frac{x-1475}{x} \times 100
$$

$$
13 x=100 \times-147500
$$

$$
87 x=147500
$$

$$
x=147500 \div 87
$$

$$
=\text { Rs } 1695.40
$$

$$
\therefore \quad C P \quad=\text { Rs } 1695.40
$$

$$
\text { New SP }=\text { Rs } 1615
$$

$$
\text { Loss }=1695.40-1615
$$

$$
=\text { Rs } 80.40
$$

Hence, there will be a loss of Rs 80.40

Exercise 6B

1. (i) $D=M P-S P$

$$
\begin{aligned}
& =650-520 \\
& =\operatorname{Rs} 130
\end{aligned}
$$

$$
D \%=\frac{D}{M P} \times 100 \%
$$

$$
\begin{aligned}
& =\frac{13 Q}{65 Q} \times 100^{20 \%} \\
& =20 \%
\end{aligned}
$$

\therefore Discount $=$ Rs 130; Discount $\%=20 \%$
(ii). Discount of 15% means, if SP is Rs $85, \mathrm{MP}=$ Rs 100
if $S P$ in Rs $170, M P=R s \frac{100}{85} \times 170^{2}$
$\therefore \mathrm{MP}=$ Rs 200
$D=M P-S P$
$=200-170$
$=\quad$ Rs 30
$M P=R s 200, D=R s 30$
Hence, Marked price = Rs 200
Discount = Rs 30
(iii)

> D\% $=\frac{D}{M P} \times 100 \%$ $10 \%=\frac{D}{840} \times 100 \%$ $10=\frac{D}{840} \times 100$ $D=$ $D=\frac{10 \times 840}{100}$ $D=R s 84$ D
\therefore Discount $=$ Rs 89, Selling Price $=$ Rs 756
(iv) $\mathrm{SP}=\mathrm{MP}-\mathrm{D}$
$=5600-1400$
$=\quad$ Rs 4200
$D \%=\frac{D}{M P} \times 100 \%$
$=\frac{1400^{25}}{5600} \times 100 \%$
$=25 \%$
Hence Marked price = Rs 4200,
2. $\mathrm{MP}=\mathrm{Rs} 400$

$$
D \% \quad=\quad 10 \%
$$

$$
D \%=\frac{D}{M P} \times 100 \%
$$

$$
10=\frac{D}{4 \theta \theta} \times 100
$$

$\mathrm{D}=\mathrm{Rs} 40$
$=M P-D$
$S P=400-40$
$=\quad$ Rs 360
Hence net selling price of the article $=$ Rs 360
3. Marked Price = Rs 1000 (Marked price is same as list price)
selling Price $=$ Rs 900.

$$
\begin{aligned}
\text { Discount } & =M P-S P \\
& =1000-900=\text { Rs } 100 \\
& =\frac{100}{1000} \times 100=10 \%
\end{aligned}
$$

Hence, the discount per cent $=10 \%$
4. $\mathrm{SP}=\mathrm{Rs} 450$
$D \%=10 \%$
Let marked Price (MP) $=$ Rs x
$\mathrm{D} \%=\frac{(x-450)}{x} \times 100 \%$
$10=\frac{(x-450)}{x} \times 100$
$10 x=100 x-45000$
$90 x=45000$
500
$x=\frac{45000}{90}=500$
\therefore Marked Price $=$ Rs 500 or list price $=$ Rs 500
5. When $\mathrm{CP}=$ Rs 100

MP

$$
\begin{aligned}
& =\operatorname{Rs}(100+30) \\
& =\operatorname{Rs} 130
\end{aligned}
$$

Discount $=10 \%$ of MP

$$
\begin{aligned}
& =\frac{10}{100} \times 130 \\
& =\text { Rs } 13
\end{aligned}
$$

Net selling price $=$ Rs (130-13)

$$
=\quad \text { Rs } 117
$$

Profit $=$ Rs 117-100

$$
=\quad \text { Rs } 17
$$

Profit $\%=\frac{17}{100} \times 100 \%=17 \%$
$\therefore \quad$ Profit $\%=17 \%$
6. When $\mathrm{CP}=$ Rs 100

Price with 20% discount $=\operatorname{Rs}(100-20)$ Rs 80
Discount = Rs 80 (New cost price)
Goods are sold at a profit of 25%

$$
\begin{aligned}
25 \% & =\frac{P}{100} \times 100 \% \\
P & =\operatorname{Rs} 25 \\
M P & =100+25=\operatorname{Rs} 125
\end{aligned}
$$

When marked price is Rs 125 , cost price is Rs 80

If marked price is Rs 2000, cost price

$$
\begin{aligned}
& =\frac{80 \times 2000^{16}}{125_{5}} \\
& =\text { Rs } 1280
\end{aligned}
$$

Hence, cost price of goods is Rs 1280.

Exercise 6C

1. (i) Taxable Income
(ii) agricultural assets
(iii) Rs 20000
(iv) Value added tax
(v) Rs 300000
(vi) Marked price free
2. (i) True : Free income is not taxable.
(ii) True : By Islamic law.
(iii) False : Sale tax is paid by buyer on the purchase.
(iv) False : The agent who makes the deal gets the commission.
(v) True : Value added tax in paid by the buyer to the seller.
(vi) False: $\mathrm{MP}=\mathrm{CP}+\mathrm{D}$
(vii) True

The discount on Rs 200 (marked price) at the rate of 10% will be Rs 20 . The selling price will be Rs 180.
(viii) True : By Islamic law.
3. Samera's monthly income $=$ Rs 35000

Yearly salary

$$
\begin{aligned}
& =\text { Rs } 35000 \times 12 \\
& =\text { Rs } 420000 \\
& =5 \%
\end{aligned}
$$

Income tax rate
She pays $42000 \times \frac{5}{100}$ as income tax

$$
\text { = Rs } 21000
$$

\therefore Samera pays Rs 21000 income tax in a year.
4. Jawaid monthly salary $=$ Rs 40000

Annual salary of Jawaid $=$ Rs 40000×12
= RS 480000
Taxable salary = total salary - exempted salary

$$
\begin{aligned}
& =\text { Rs } 480000-\text { Rs } 100000 \\
& =\text { Rs } 380000
\end{aligned}
$$

Amount of income tax paid by Jawaid

$$
\begin{aligned}
& =380000 \times \frac{4}{100} \\
& =\operatorname{RS} 15200
\end{aligned}
$$

\therefore Amount of income tax paid $=$ Rs 15200
5. Annual income of Saad = Rs 5000000 Income tax paid by him = Annual income \times tax rate
Income tax $\%=$ Income tax paid \div Annual income

$$
\begin{aligned}
& =\frac{15}{550000} \\
& =\frac{100 \%}{5} 000000 \\
& =15 \%
\end{aligned}
$$

\therefore Income tax rate $=15 \%$
6. Value of the factory $=$ Rs 200000000.

$$
\begin{aligned}
\text { Property tax } & =2 \% \\
\text { Property tax } & =\frac{2}{100} \times 200000000 \\
& =\operatorname{Rs} 4000000
\end{aligned}
$$

\therefore Haider should pay Rs 4000000 as property tax.
7. Property tax rate $=2 \%$

Property tax paid $=$ Rs 15,000 Rs 15,000
$=2 \% \times$ value of the property

Value of the property $=\frac{15,000 \times 100}{z}$
(two plots)
$=$ Rs 750,000
Value of each plot $=$ Rs 750,000 $\div 2$
$=$ Rs 375,000
Hence, the value of each plot is Rs 375,000
8. Old price of Pizza $=$ Rs 800

New Price of Pizza $=$ Rs 900
after applying GST
Amount of GST $=900-800$
$=$ Rs 100
GST\% $=\frac{100^{25}}{800} \times 100 \%$
$=\frac{25}{2} \%$
$=12.5 \%$
Hence general sales tax $\%=12.5 \%$
9. List price of radio set $=$ Rs 1200

Rate of sales tax $=7 \%$
Amount of sales tax $=\frac{7}{1 \theta \theta} \times 1200$

$$
=\operatorname{Rs} 84
$$

Cost of radio set including $=1200+84$
Sale tax
$=$ Rs 1284
Hence amount of sales tax $=$ Rs 84
Cost of radio set $=$ Rs 1284
10. Rate of commission $=25 \%$

Sale price of the car = Rs 1495000
Total amount of commission $=$ Rate \times cost of car.

$$
\begin{aligned}
& =\frac{25}{1 \theta \theta} \times 1495000 \\
& =\text { Rs } 373750
\end{aligned}
$$

\therefore The car dealer earns a commission of Rs 373750.
11. The cost of shirt without VAT

$$
\text { = Rs } 750
$$

Rate of VAT
= 12.5\%
The amount of VAT paid $=$ Rs $750 \times 12.5 \%$
$=750 \times \frac{125}{100 \times 1 \theta}$
$=\frac{9375}{100}$
= Rs 93.75
The price of shirt including VAT

$$
\begin{aligned}
& =\text { Rs } 750+\text { Rs } 93.75 \\
& =\text { Rs } 843.75
\end{aligned}
$$

12. Amount charged by the builder $=$ Rs 57000 (value added tax) VAT $=20 \%$ Amount of VAT paid by builder

	$=57000 \times \frac{20}{100}$
	$=$ Rs 11400
Total bill including VAT	$=57000+11400$
	$=68400$
\therefore VAT	$=$ Rs 11400
Total bill	$=$ Rs 68400

13. Cost of item = Rs 7500

VAT (value-added tax) $=15 \%$
Amount of VAT $=7500 \times \frac{15}{100}$

$$
=\text { Rs } 1125
$$

Total amount of item inclusive VAT

$$
\begin{aligned}
& =7500+1125 \\
& =\text { Rs } 8625
\end{aligned}
$$

VAT $=$ Rs 1125, cost of item inclusive VAT

$$
\text { = Rs } 8625
$$

14. Cost of jewellery = Rs 127750

Rate of commission = 4\%
Amount of commission Aamir receives

$$
\begin{aligned}
& \quad 5110 \\
& =127750 \times \frac{4}{1 \theta \theta_{z 5}} \\
& =\text { Rs } 5110
\end{aligned}
$$

Amount of commission received by Aamir = Rs 5110
15. Rate of zakat $=2 \frac{1}{2} \%$
yearly savings $=$ Rs 400,000
Zakat paid $=2 \frac{1}{2} \% \times 400,000$

$$
\begin{aligned}
& =\frac{5 \times 400000^{2000}}{z \times 100} \\
& =\operatorname{Rs} 10,000
\end{aligned}
$$

Hence, the zakat paid is Rs 10,000.
16. Rate of zakat $=2 \frac{1}{2} \%=\frac{5}{2} \%$

Yearly savings $=$ Rs 93,800
Amount of zakat $=\frac{5}{2} \% \times 93,800$

$$
\begin{aligned}
& =\frac{5 \times 93800^{469}}{z \times 100} \\
& =\text { Rs } 2345
\end{aligned}
$$

Hence, the amount of zakat should be paid is Rs 2345
17. Zakat paid = Rs 1125

$$
\begin{aligned}
& \text { Rate of zakat }=2 \frac{1}{2} \%=\frac{5}{2} \% \\
& \text { Yearly saving }=1125 \div \frac{5}{2} \% \\
& =\frac{1125^{225} \times 2 \times 100}{5} \\
& =\text { Rs } 45,000
\end{aligned}
$$

Hence the yearly saving is Rs 45,000 .

Multiple Choice Questions 6

Wealth tax is paid on assets, which may be in the form of money, gold, silver or even animals, someone keep to earn money.
Income tax is paid on annual income of a person. Agricultural tax is known as Ushr and is applied on agricultural assets.
Property tax is applied on all kind of i properties owned by a person.

1. Option A is correct
2. Option C is correct.
3. Option A is correct.
4. Option C is correct.

Since, profit $=\frac{15000}{100} \times 10=$ Rs 1500
5. Option B is correct.
6. Option D is correct.
7. Option A is correct

Revision 2: Arithmetic

1. (i) Inverse
(ii) Direct
(iii) Direct
(iv) Direct
(v) Inverse
(vi) Inverse
2. Cost of 2 tables $=$ Rs 2500

Cost of 1 table $=\frac{2500}{2}$
Cost of 3 table $=\frac{2500^{1250}}{z} \times 3=$ Rs 3750
Cost of 5 chairs $=$ Rs 2500
Cost of 1 chair $=\frac{2500}{5}=$ Rs 500
Cost of 6 chairs $=$ Rs $500 \times 6=$ Rs 3,000
Cost of 3 tables and 6 chairs

$$
\begin{aligned}
& =\operatorname{Rs} 3750+\operatorname{Rs} 3000 \\
& =\operatorname{Rs} 6,750
\end{aligned}
$$

3. Cost of 1 article $=$ Rs 80

Cost of 20 articles $=$ Rs $80 \times 20=$ Rs 1600
Price of each article increased by 25%
Increase in price of each article

$$
\begin{aligned}
& =\frac{25^{1}}{100^{4}} \times 80^{20} \\
& =\operatorname{Rs} 20
\end{aligned}
$$

Net price of an article $=80+20=$ Rs 100
Number of articles can be bought

$$
\begin{aligned}
& =\text { Rs } 1600 \div \text { Rs } 100 \\
& =\text { Rs } 16
\end{aligned}
$$

Hence, the retailer can buy 16 articles.
4. (i) If number of persons is increased, number of days will decrease, so there is an inverse proportion
Now, we proceed as follows.
Persons Days
$6 \quad 8$
$8 \quad x$ (let x be the required number of days)
$\therefore \frac{6}{8}=\frac{x}{8} \quad$ (Inversely proportioned)

$$
x=\frac{6 \times 8}{8}
$$

$$
=6 \text { days }
$$

(ii) Let the original price $=$ Rs 100 Then reduced price $=100-8=$ Rs 92
Let x be the required original price, we proceed as fallows:

Original price	Reduced price
100	92
x	230

$\therefore \frac{100}{x}=\frac{92}{230}$ (direct variation)
$92 \times x=230 \times 100$
$\begin{aligned} x & =\frac{230^{10} \times 100^{25}}{} \\ & =250^{9 Z_{4}}\end{aligned}$
\therefore Original price $=$ Rs 250
5. Let x be the required distance. Now, Distance (m) Time (sec)
$80(2)^{2}$
Distance varies directly as square of time.

$$
\begin{aligned}
x & \\
\frac{80}{x} & =\frac{16}{25} \\
x & =\frac{80^{2} \times 25}{16} \\
x & =125
\end{aligned}
$$

\therefore The required distance is 125 m .
6. Let x be the number of workers to finish the work in 18 days. There is an inverse proportion.
Now,

Workers		Days
24		30
x		18
$\frac{x}{24}$	$\frac{30}{18}$	
x	$=$	$\frac{30^{10} \times 24^{4}}{48_{8_{1}}}$
	$=40^{2}$	

$\therefore 40$ workers will finish the construction in 18 days.
40-24 = 16 more workers will be required.
7. First we find the cost price of the TV set. If Rs 100 in the cost price, selling price will be Rs 80 .
Now, for selling on 10% gain, we proceed as
CP SP

100120
$4500 \quad x$
$x=\frac{4500 \times 110}{100}$
$x=4950$
\therefore the selling price must be Rs 4950.
8. The cost price of 400 comics $=$ Rs 1500

The selling price of 300 comics $=300 \times 4.50$

$$
\begin{aligned}
& =1350.00 \\
& =\operatorname{Rs} 1350
\end{aligned}
$$

The selling price of 100 comics

$$
\begin{aligned}
& =100 \times 4.00 \\
& =400=\text { Rs } 400
\end{aligned}
$$

The selling price of 400 comics

$$
\begin{aligned}
& =\text { Rs } 1350+\text { Rs } 400 \\
& =\text { Rs } 1750 \\
& =\text { SP }-C P \\
& =1750-1500 \\
& =\text { Rs } 250
\end{aligned}
$$

Profit

$$
\begin{aligned}
\mathrm{P} \% & =\frac{\mathrm{P}}{\mathrm{CP}} \times 100 \% \\
& =\frac{250^{50}}{3^{1500}} \times 100 \% \\
& =\frac{50}{3} \%=16 \frac{2}{3} \%
\end{aligned}
$$

9. (i) $\mathrm{MP}=\operatorname{Rs} 900$

$$
S P \quad=\quad \text { Rs } 810
$$

$$
\mathrm{D}=900-810
$$

$$
D \quad=\quad \operatorname{Rs} 90
$$

$$
D \%=\frac{90^{10}}{900} \times 100 \%
$$

$$
=10 \%
$$

(ii) $\mathrm{D} \%=\frac{\mathrm{D}}{\mathrm{MP}} \times 100 \%$

$$
12 \%=\frac{180}{M P} \times 100 \%
$$

$$
12=\frac{180}{M P} \times 100
$$

$$
M P=\frac{48 \theta^{15} \times 100}{142}
$$

\therefore Marked price is Rs 1500

$$
\begin{aligned}
S P & =M P-D \\
& =1500-180 \\
& =\text { Rs } 1320
\end{aligned}
$$

\therefore selling price is Rs 1320
(iii) $\mathrm{D} \%=\frac{90^{15}}{600} \times 100 \%$

$$
=15 \%
$$

\therefore discount\% is 15%

$$
\begin{aligned}
S P & =M P-P \\
& =600-90 \\
& =\operatorname{Rs} 510
\end{aligned}
$$

\therefore selling price is Rs 510
(iv) $18 \%=\frac{27}{\mathrm{MP}} \times 100 \%$

$$
\begin{aligned}
\text { MP } & =\frac{27^{3} \times 100^{50}}{18} z \\
& =150
\end{aligned}
$$

\therefore Marked price is Rs 150 .

$$
\begin{aligned}
S P & =M P-D \\
& =150-27
\end{aligned}
$$

$$
=123
$$

\therefore selling price is Rs 123
(v) $8 \%=\frac{D}{9600} \times 100 \%$

DP $=8 \times 9600$
100
$=768$
\therefore Actual discount is Rs 768 .
$S P=M P-D$
$=9600-768$
$=8832$
\therefore Selling price is Rs 8832 .
10. Horse Days

435
$7 x$ (There is a inverse variation)

$$
\begin{aligned}
\frac{4}{7} & =\frac{x}{35} \\
x & =\frac{4 \times 35}{71} \\
& =20
\end{aligned}
$$

\therefore The amount of grain will last for 20 days.
11. Discount (km) Time (hours)

$$
\begin{array}{rl}
\frac{75}{8} & \frac{5}{2} \\
5 & x \quad \begin{array}{l}
\text { (There is a direct } \\
\text { variation) }
\end{array} \\
\frac{x \times 2}{5}= & \frac{5 \times 8}{75} \\
x= & \frac{5^{1} \times 8^{4}}{75_{153}} \times \frac{5}{z} \\
= & \frac{4}{3} \\
= & 1 \frac{1}{3}
\end{array}
$$

She will take 1 hour 20 minutes

Algebraic Polynomials

Exercise 7A

1. (i) $n^{\text {th }}$ term $=3 n+2$
$\begin{array}{ll}n_{1} & =3 \times 1+2=5 \\ n_{2} & =3 \times 2+2=8 \\ n_{3} & =3 \times 3+2=11 \\ n_{4} & =3 \times 4+2=14 \\ n_{5} & =3 \times 6+2=17\end{array}$
(ii) $n^{\text {th }}$ term $=5 n-2$
$n_{1}=5 \times 1-2=3$
$n_{2}=5 \times 2-2=8$
$n_{3}=5 \times 3-2=13$
$n_{4}=5 \times 4-2=18$
$n_{5}=5 \times 5-2=23$
(iii) $n^{\text {th }}$ term $=10-\mathrm{n}$
$n_{1}=10-1=9$
$n_{2}=10-2=8$
$n_{3}=10-3=7$
$n_{4}=10-4=6$
$n_{5}=10-5=5$
(iv) $n^{\text {th }}$ term $=\mathrm{n}+8$
$n_{1} \quad=1+8=9$
$n_{2} \quad=2+8=10$
$n_{3} \quad=3+8=11$
$n_{4} \quad=4+8=12$
$n_{5}=5+8=13$
(v) $n^{\text {th }}$ term $=2 \mathrm{n}+5$
$\begin{array}{ll}n_{1} & =2 \times 1+5=7 \\ n_{2} & =2 \times 2+5=9 \\ n_{3} & =2 \times 3+5=11\end{array}$

$$
\begin{array}{ll}
n_{4} & =2 \times 4+5=13 \\
n_{5} & =2 \times 5+5=15
\end{array}
$$

(vi) $n^{\text {th }}$ term $=7-3 n$
n_{1}
n_{2}
n_{3}
n
n

$$
\begin{aligned}
& =7-3 \times 1=4 \\
& =7-3 \times 2=-1 \\
& =7-3 \times 3=-2 \\
& =7-3 \times 4=-5 \\
& =7-3 \times 5=-8
\end{aligned}
$$

2. (i) $n^{\text {th }}$ term $=6 n-5$

$$
\begin{aligned}
13^{\text {th }} \text { term } & =6 \times 13-5 \\
& =78-5 \\
& =73
\end{aligned}
$$

$\therefore 13^{\text {th }}$ term $=73$
(ii) $n^{\text {th }}$ term $=12 \mathrm{n}+4$
$21^{\text {st }}$ term $=12 \times 21+4$
$=252+4$
$=256$
$\therefore 21^{\text {st }}$ term $=256$
(iii) $n^{\text {th }}$ term $=5 \mathrm{n}+2$
$15^{\text {th }}$ term $=5 \times 15+2$
$=75+2$
$=77$
$\therefore 15^{\text {th }}$ term $=77$
(iv) $n^{\text {th }}$ term $=\mathrm{n}+8$
$19^{\text {th }}$ term $=19+8$
$=27$
$\therefore 19^{\text {th }}$ term $=27$
3.

Helpful Hint:
Inequalities are the mathematical expression in which two sides are not equal.
(i), (ii), (iii), (v), (vi), (viii), (ix) and (x) are Inequalities.
4.

Helpful Hint:

Add the algebraic polynomials by placing the similar terms one below another.

Add

(i) $2 a+3 b$

$$
\frac{4 a+7 b}{6 a+10 b}
$$

(ii) $3 a-4 b$
$2 a+5 b$
$5 a+b$
(iii) $3 a+6 b$

$$
\frac{a-7 b}{4 a-b}
$$

(iv) $x^{2}+5 y$

$$
\frac{-3 x^{2}-2 y}{-2 x^{2}+3 y}
$$

(v) $-3 a^{2}-5 a b+2 b^{2}$

$$
\frac{7 a^{2}+2 a b-b^{2}}{4 a^{2}-3 a b+b^{2}}
$$

(vi) $4 x y-8$

$x y+6$
$5 x y-2$

(vii) Writing the expressions vertically

$$
\begin{aligned}
& 4 x^{2}-5 x y-6 \not y^{2} \\
& -6 x^{2}+10 x y+3 / y^{2} \\
& -4 x^{2}+2 x y+3 y^{2} \\
& \hline-6 x^{2}+7 x y \\
& \hline
\end{aligned}
$$

(viii) $x^{2}-2 x y+y^{2}$
$x^{2}+2 x y+y^{2}$
$4 x^{2}-x y+y^{2}$

$$
\begin{aligned}
& x^{2}-y^{2} \\
& \hline 7 x^{2}-x y+2 y^{2} \\
& \hline
\end{aligned}
$$

5. $\mathrm{A}=2 x-3 y+4 z$
$B=5 x-6 y+7 z$
$\mathrm{C}=-x-y+z$
Arranging the terms horizontally we get,
$\mathrm{A}+\mathrm{B}+\mathrm{C}=(2 x-3 y+4 z)+(5 x-6 y+7 z)$

$$
\begin{gathered}
\quad+(-x-y+z) \\
=2 x-3 y+4 z+5 x-6 y+7 z-x-y+z
\end{gathered}
$$

Arranging the same terms together,
$=(2 x+5 x-x)+(-3 y-6 y-y)+(4 z+7 z+z)$
$=6 x-10 y+12 z$
Hence $A+B+C=6 x-10 y+12 z$
6. $\mathrm{X}=2 x^{2}-3 x y+4 y^{2}$
$\mathrm{Y}=x^{2}+2 x y-3 y^{2}$
$Z=-4 x^{2}+5 x y+y^{2}$
Arranging the same terms together,
$\mathrm{X}+\mathrm{Y}+\mathrm{Z}=\left(2 x^{2}+x^{2}-4 x^{2}\right)+(-3 x y+2 x y+5 x y)$

$$
+\left(4 y^{2}-3 y^{2}+y^{2}\right)
$$

$=-x^{2}+4 x y+2 y^{2}$
Hence $\mathrm{X}+\mathrm{Y}+\mathrm{Z}=-x^{2}+4 x y+2 y^{2}$
7. Subtract:

Helpful Hint: ${ }^{-}$

Change the signs of the second expression.
(i) $a-b+c$ from $2 a+b-c$

$$
2 a+b-c
$$

$$
a-b+c
$$

$$
-\quad+\quad-
$$

$$
a+2 b-2 c
$$

(ii) $3 a-2 b-4 c$ from $2 a+3 b+c$
$2 a+3 b+c$
$3 a-2 b-4 c$
$-\quad+\quad+$

$$
-a+5 b+5 c
$$

$$
\text { (iii) } \begin{aligned}
& 7 a^{2}-8 a b-b^{2} \text { from }-2 a^{2}+3 a b-2 b^{2} \\
& -2 a^{2}+3 a b-2 b^{2} \\
& 7 a^{2}-8 a b-b^{2} \\
& -\quad+\quad+ \\
& \\
& -9 a^{2}+11 a b-b^{2}
\end{aligned}
$$

(iv) $x^{2}-y^{2}+z^{2}+2 y z$ from $x^{2}+y^{2}+z^{2}+2 y z$ $x^{2}+y^{2}+z^{2}+2 y z$ $x^{2}-y^{2}+z^{2}+2 y z$

$$
2 y^{2}
$$

(v) $p^{4}-2 p^{3}-3 p^{2}-4 p-5$ form
$-p^{4}+5 p^{3}+4 p^{2}+3 p+2$
$-p^{4}+5 p^{3}+4 p^{2}+3 p+2$
$p^{4}-2 p^{3}-3 p^{2}-4 p-5$
+++
$-2 p^{4}+7 p^{3}+7 p^{2}+7 p+7$
(vi) $2 x^{2}+3$ from $x^{2}+3 x-2$
$x^{2}+3 x-2$
$-\begin{array}{r}2 x^{2} \\ - \\ \hline\end{array}$
$-x^{2}+3 x-5$
8. The sum of two quantities $=4 a x+3 b y+2 c z$

One of the term is $5 a x+b y-c z$
Subtract one term from the sum.
$4 a x+3 b y+2 c z$
$5 a x+b y-c z$

- - +

$-a x+2 b y+3 c z$
Hence, the other term is $-a x+2 b y+3 c z$
9. To obtain the required result, we will subtract 4 from $4 a^{3}+3 a^{2}-a-5$

$$
\begin{aligned}
& \left(4 a^{3}+3 a^{2}-a-5\right)-(4) \\
& =\quad 4 a^{3}+3 a^{2}-a-5-4 \\
& =\quad 4 a^{3}+3 a^{2}-a-9
\end{aligned}
$$

Hence, the required result is $4 a^{3}+3 a^{2}-a-9$
10. Creating the sequence of the arrival times we get
9:00 am 9:30 am 10:am 10:30 am 11am The 5th bus arrives at 11:00 am

Exercise 7B

1. Arrange the following expressions in ascending and descending order of the variable indicated.
(i) $7 x-4+5 x^{2}-3 x^{3}(x)$

Descending order:
$-3 x^{3}+5 x^{2}+7 x-4$
Ascending order:
$-4+7 x+5 x^{2}-3 x^{3}$
(ii) $2 x^{2}+7-3 x(x)$

Descending order:
$2 x^{2}-3 x+7$
Ascending order:
$7-3 x+2 x^{2}$
(iii) $4 b^{3}-a b^{2}+a^{3}-a^{2} b^{2} \quad(a)$

Descending order:
$a^{3}-a^{2} b^{2}-a b^{2}+4 b^{3}$
Ascending order
$4 b^{3}-a b^{2}-a^{2} b^{2}+a^{3}$
(iv) $6 x^{2}+x y+2 x-2 y^{2}-y$

Descending order:
$-2 y^{2}+x y-y+2 x+6 x^{2}$
Ascending order:
$6 x^{2}+2 x-y+x y-2 y^{2}$
2. Simplify:

Helpful Hint:

When we multiple numbers with same base, powers are added.
(i) $\left(x^{4}\right)^{2}$
$=x^{4} \times x^{4}$
$=x^{8}$
(ii) $\left(y^{5}\right)^{3}$
$=y^{5} \times y^{5} \times y^{5}=y^{5+5+5}$
$=y^{15}$
(iii) $\left(-3 a^{3}\right)^{2}$
$=\left(-3 a^{3}\right) \times\left(-3 a^{3}\right)$
$=-3 a^{3} \times-3 a^{3}$
$=9 a^{6}$
(iv) $\left(-5 a^{4}\right)^{2}$

$$
\begin{aligned}
& =-5 a^{4} \times-5 a^{4} \\
& =-5 \times-5 \times a^{4} \times a^{4} \\
& =25 a^{8}
\end{aligned}
$$

(v) $\quad\left(2 a^{2} b^{2}\right)^{3}$
$=2 a^{2} b^{2} \times 2 a^{2} b^{2} \times 2 a^{2} b^{2}$
$=8 \times a^{2} \times a^{2} \times a^{2} \times b^{2} \times b^{2} \times b^{2}$
$=8 a^{6} b^{6}$
(vi) $\left(\frac{1}{2} x^{2}\right)^{3}$
$=\frac{1}{2} x^{2} \times \frac{1}{2} x^{2} \times \frac{1}{2} x^{2}$
$=\frac{1}{8} \times x^{2} \times x^{2} \times x^{2}=\frac{1}{8} x^{6}$
3. Simplify:
(i) $\quad\left(2 a^{2}\right)^{2} \times(2 a)^{3}$
$=2 a \times 2 a \times 2 a \times 2 a \times 2 a$
$=32 a^{5}$
Hence, $(2 a)^{2} \times(2 a)^{3}=32 a^{5}$
(ii) $(10 x)^{2} \times(10 x)^{3}$
$(10 x)^{5}=10 \times 10 \times 10 \times 10 \times 10 \times x^{5}$
$=100000 x^{5}$
Hence, $(10 x)^{2} \times(10 x)^{3}=100,000 x^{5}$
(iii) $\left(-2 x^{6}\right)^{3}=-8 x^{6 \times 3}$

$$
=-8 x^{18}
$$

Helpful Hint:
To find the power of a power, we multiply the exponents.

Hence, $\left(-2 x^{6}\right)^{3}=-8 x^{18}$
(iv) $\quad\left(-4 a b^{2}\right)^{2} \times\left(2 a^{2} b\right)^{3}$

$$
\begin{aligned}
& =\left(-4 a b^{2} \times-4 a b^{2}\right) \times\left(2 a^{2} b \times 2 a^{2} b \times 2 a^{2} b\right) \\
& =16 a^{2} b^{4} \times 8 a^{6} b^{3} \\
& =128 a^{2+6} b^{4+3} \\
& =128 a^{8} b^{7}
\end{aligned}
$$

Hence, $\left(-4 a b^{2}\right)^{2} \times\left(2 a^{2} b\right)^{3}=128 a^{8} b^{7}$
4. Simplify:
(i) $2(x+3)$

$$
\begin{aligned}
& =2 \times x+2 \times 3 \\
& =2 x+6
\end{aligned}
$$

(ii) $a(2-a)$
$=2 \times a-a \times a$
$=2 a-a^{2}$
(iii) $x(y+z)$
$=x \times y+x \times z$
$=x y+x z$
(iv) $3 a\left(a^{2}-3 a\right)$
$=2 a \times a^{2}-3 a \times 3 a$
$=3 a^{2+1}-9 a^{1+1}$
$=3 a^{3}-9 a^{2}$
(v)

$$
\begin{aligned}
& 5 a\left(4 a^{2}-7 a-8\right) \\
= & 5 a \times 4 a^{2}-7 a \times 5 a-8 \times 5 a \\
= & 20 a^{3}-35 a^{2}-40 a
\end{aligned}
$$

5. Multiply:
(i)

$$
\begin{aligned}
& a^{2}-b^{2}, a b \\
& a b\left(a^{2}-b^{2}\right) \\
= & a b \times a^{2}-a b \times b^{2} \\
= & a^{3} b-a b^{3}
\end{aligned}
$$

(ii) $b c+c a-a b,-2 a b c$

$$
=-2 a b c(b c+c a-a b)
$$

$$
=(-2 a b c) \times(b c)+(-2 a b c) \times(c a)
$$

$$
+(-2 a b c) \times(-a b)
$$

$$
=-2 a b^{2} c^{2}-2 a^{2} b c^{2}+2 a^{2} b^{2} c
$$

(iii)

$$
2 p q^{2}-3 p q^{3}+4 q^{4},-2 p q r
$$

$$
=(-2 p q r)\left(2 p^{2} q^{2}-3 p q^{3}+4 q^{4}\right)
$$

$$
=(-2 p q r) \times\left(2 p^{2} q^{2}\right)+(-2 p q r)\left(-3 p q^{3}\right)
$$

$$
+(-2 p q r)\left(4 q^{4}\right)
$$

$$
=-4 p^{3} q^{3} r+6 p^{2} q^{4} r-8 p q^{5} r
$$

(iv) $\quad-3 / 8 x^{5} y^{3} z, 16 x y z$

$$
(16 x y z) \times\left(-\frac{3}{8} x^{5} y^{3} z\right)
$$

$$
=\left(16^{2}\right) \times\left(-\frac{3}{8_{1}}\right) x^{5+1} y^{3+1} z^{1+1}
$$

$$
=-6 x^{6} y^{4} z^{2}
$$

6. Simplify:
(i) $a b(3 a-5 b)$
$=(a b)(3 a)-(a b)(5 b)$
$=3 a^{2} b-5 a b^{2}$
(ii) $6 m n(3 m-3 n)$
$=(6 m n)(2 m)-(3 n)(6 m n)$
$=12 m^{2} n-18 m n^{2}$
(iii) $\quad\left(x^{2}-5 x-6\right)(x-4)$
$=x\left(x^{2}-5 x-6\right)-\left(4 x^{2}-5 x-6\right)$
$=\left(x^{3}-5 x^{2}-6 x\right)-4\left(x^{2}-20 x-24\right)$
$=x^{3}-5 x^{2}-6 x-4 x^{2}+20 x+24$
$=x^{3}-9 x^{2}+14 x+24$
(iv)
$\left(a^{2}-a b+b^{2}\right)(a+b)$
$=a\left(a^{2}-a b+b^{2}\right)+b\left(a^{2}-a b+b^{2}\right)$
$=a^{3}-a^{2} b+a b^{2}+a^{2} b-a b^{2}+b^{3}$
$=a^{3}+b^{3}$
(v) $\quad(3 a+2 b)(5 a-7 b)$
$=3 a(5 a-7 b)+2 b(5 a-7 b)$
$=15 a^{2}-21 a b+10 a b-14 b^{2}$
$=15 a^{2}-11 a b-14 b^{2}$
7. Simplify:
(i)

$$
\begin{aligned}
& 3(x-4)+4(x-3)+5(x-2) \\
= & 3 x-12+4 x-12+5 x-10 \\
= & 3 x+4 x+5 x-12-12-10 \\
= & 12 x-34
\end{aligned}
$$

(ii)

$$
x(a-x)+2 x(2 a+x)+3 x(3 a-x)
$$

$$
=a x-x^{2}+4 a x+2 x^{2}+9 a x-3 x^{2}
$$

$$
=-x^{2}+2 x^{2}-3 x^{2}+a x+4 a x+9 a x
$$

$$
=-2 x^{2}+14 a x
$$

(iii) $x^{2}\left(x^{2}+a x+a^{2}\right)-a x\left(x^{2}-a x-a^{2}\right)+$

$$
a^{2}\left(x^{2}+2 a x+2 a^{2}\right)
$$

$=x^{4}+a x^{3}+a^{2} x^{2}-a x^{3}+a^{2} x^{2}+a^{3} x+$ $a^{2} x^{2}+2 a^{3} x+2 a^{4}$
$=x^{4}+a^{2} x^{2}+a^{2} x^{2}+a^{2} x^{2}+a^{3} x+2 a^{3} x+2 a^{4}$
$=x^{4}+3 a^{2} x^{2}+3 a^{3} x+2 a^{4}$
(iv) $a(b-c)+b(c-a)+c(a-b)$
$=a b-a c+b c-a b+a c-b c$
$=0$
(v) $\quad z^{2}\left(x^{2}-y^{2}\right)+x^{2}\left(y^{2}-z^{2}\right)+y^{2}\left(z^{2}-x^{2}\right)$
$=x^{2} z^{2}-y^{2} z^{2}+x^{2} y^{2}-x^{2} z^{2}+y^{2} z^{2}-x^{2} y^{2}$
$=0$
(vi)
$a^{2}\left(a^{2}+b^{2}+c^{2}\right)-b^{2}\left(a^{2}+b^{2}+c^{2}\right)$
$-c^{2}\left(a^{2}+b^{2}+c^{2}\right)$
$=a^{4}+a^{2} b^{2}+a^{2} c^{2}-a^{2} b^{2}-b^{4}-b^{2} c^{2}-a^{2} c^{2}$
$-b^{2} c^{2}-c^{4}$
$=\quad a^{4}-b^{4}-2 b^{2} c^{2}-c^{4}$
8. Simplify:

Helpful Hint:

When we divide numbers with same base, the powers are subtracted.
(i) $\frac{3 x}{x}$
$=3 x^{1-1}$
$=3 x^{0}$
$=3$
(ii) $\frac{8 a^{2}}{-2 a}$

$$
=-4 a^{2-1}
$$

$$
=-4 a
$$

(iii) $\frac{3 c^{3} d^{5}}{c d}$

$$
=3 c^{3-1} d^{5-1}
$$

$$
=3 c^{2} d^{4}
$$

(iv) $\frac{5 x^{2} y^{2}}{10 x y}$

$$
\begin{aligned}
& =\frac{1}{2} x^{2-1} y^{2-1} \\
& =\frac{1}{2} x y \\
& =\frac{x y}{2}
\end{aligned}
$$

(v) $\quad \frac{-18 x^{3} y^{5}}{12 x y^{2}}$

$$
\begin{aligned}
& =-\frac{3}{2} x^{3-1} y^{5-2} \\
& =-\frac{3}{2} x^{2} y^{3} \\
& =-\frac{3 x^{2} y^{3}}{2}
\end{aligned}
$$

9. Simplify:
(i)
$(9 x-6 y) \div 3$

$$
=\frac{9 x}{3}-\frac{6 y}{3}
$$

$$
=3 x-2 y
$$

(ii) $(6 c-18) \div 6$

$$
\begin{aligned}
& =\frac{6 c}{6}-\frac{18}{6} \\
& =c-3
\end{aligned}
$$

(iii) $\left(4 a^{3}-10 a^{2}+6 a\right) \div 2 a$

$$
\begin{aligned}
& =\frac{4 a^{3}}{2 a}-\frac{10 a^{2}}{2 a} \quad \frac{6 a}{2 a} \\
& =2 a^{3-1}-5 a^{2-1}+3 a^{1-1} \\
& =2 a^{2}-5 a+3 a^{\circ} \\
& =2 a^{2}-5 a+3 \quad\left(a^{\circ}=1\right)
\end{aligned}
$$

(iv) $=\left(6 x^{2} y-4 x y^{2}\right) \div 2 x y$

$$
\begin{aligned}
& \frac{6 x^{2} y}{2 x y}-\frac{4 x y^{2}}{2 x y} \\
= & 3 x^{2-1} y^{1-1}-2 x^{1-1} y^{2-1} \\
= & 3 x y^{\circ}-2 x^{\circ} y \\
= & 3 x-2 y\left(\therefore y^{\circ}=1 ; x^{\circ}=1\right)
\end{aligned}
$$

10. Divide the first term by the second term.
(i)

$$
-64 a b x y, 4 a b x
$$

$$
=\frac{-64 a b x y}{4 a b x}
$$

$$
=-16 a^{1-1} b^{1-1} x^{1-1} y
$$

$$
=-16 a^{\circ} b^{\circ} x^{\circ} y
$$

$$
=-16 y
$$

(ii) $=-20 a b^{2} c, 5 a b c$
$=\frac{-20 a b^{2} c}{5 a b c}$
$=-4 a^{1-1} b^{2-1} c^{1-1}$
$=-4 a^{\circ} b c^{\circ}$
$=-4 b$
(iii) $a^{4} b^{3},-a^{2} b$
$=\frac{a^{4} b^{3}}{-a^{2} b}$
$=-a^{4-2} b^{3-1}$
$=-a^{2} b^{2}$
(iv) $4 a b^{2} c^{3},-2 a b c$
$=\frac{4 a b^{2} c^{3}}{-2 a b c}$
$=-2 a^{1-1} b^{2-1} c^{3-1}$
$=-2 a^{\circ} b c^{2}$
$=-2 b c^{2}$
(v)

$$
\begin{aligned}
& 3 x^{2} y-2 x y^{2}, x y \\
= & \frac{3 x^{2} y-2 x y^{2}}{x y} \\
= & \frac{3 x^{2} y}{x y}-\frac{2 x y^{2}}{x y} \\
= & 3 x^{2-1} y^{1-1}-2 x^{1-1} y^{2-1} \\
= & 3 x y^{\circ}-2 x^{\circ} y \\
= & 3 x-2 y
\end{aligned}
$$

(vi) $-15 a^{2}-25 b^{2},-5 a b$

$$
\begin{aligned}
= & \frac{-15 a^{2}-25 b^{2}}{-5 a b} \\
& \frac{-15 a^{2}}{-5 a b}-\frac{25 b^{2}}{-5 a b} \\
& \frac{3 a^{2-1}}{b}+\frac{5 b^{2-1}}{a} \\
& \frac{3 a}{b}+\frac{5 b}{a}
\end{aligned}
$$

(vii) $-24 a^{2} b^{2} c-3 a^{2} b c^{3}+6 a b^{2} c,-3 a b$

$$
=\frac{-24 a^{2} b^{2} c-3 a^{2} b c^{3}+6 a b^{2} c}{-3 a b}
$$

$$
=-\frac{24 a^{2} b^{2} c}{-3 a b}-\frac{3 a^{2} b c^{3}}{-3 a b}+\frac{6 a b^{2} c}{-3 a b}
$$

$$
=8 a^{2-1} b^{2-1} c+a^{2-1} b^{1-1} c^{3}-2 a^{1-1} b^{2-1} c
$$

$$
=8 a b c+a b^{\circ} c^{3}-2 a^{\circ} b c
$$

$$
=8 a b c+a c^{3}-2 b c
$$

(viii) $18 a^{3} b^{2} c-24 a^{2} b c^{3}+12 a^{2} b^{2} c^{2}-6 a^{3} b c^{2}, 6 a^{2} b$

$$
\begin{aligned}
& =\frac{18 a^{3} b^{2} c-24 a^{2} b c^{3}+12 a^{2} b^{2} c^{2}-6 a^{3} b c^{2}}{6 a^{2} b} \\
& =\frac{18 a^{3} b^{2} c}{6 a^{2} b}-\frac{24 a^{2} b c^{3}}{6 a^{2} b}+\frac{12 a^{2} b^{2} c^{2}}{6 a^{2} b}-\frac{6 a^{3} b c^{2}}{6 a^{2} b} \\
& =3 a^{3-2} b^{2-1} c-4 a^{2-2} b^{1-1} c^{3}+2 a^{2-2} b^{2-1} c^{2}- \\
& a^{3-2} b^{1-1} c^{2} \\
& =3 a b c-4 a^{\circ} b^{\circ} c^{3}+2 a^{\circ} b c^{2}-a b^{\circ} c \\
& =3 a b c-4 c^{3}+2 b c^{2}-a c^{2}
\end{aligned}
$$

11. Simplify:
(i)

$$
\begin{aligned}
& \frac{a^{2}-a b+a b^{2}}{a}+\frac{b^{2}-b c+b c^{2}}{b}+ \\
& \frac{c^{2}-c a+c a^{2}}{c}
\end{aligned}
$$

Taking common variable;

$$
\begin{aligned}
= & \frac{\alpha\left(a-b+b^{2}\right)}{\not ㇒}+\frac{b\left(b-c+c^{2}\right)}{\not b} \\
& +\frac{\ell\left(c-a+a^{2}\right)}{\not} \\
= & \not-\not-b+b^{2}+\not b-\varnothing+c^{2}+\varnothing \varnothing-\not \subset+a^{2} \\
= & a^{2}+b^{2}+c^{2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \frac{a^{21} 2 a b+3 a b^{2}}{a}+\frac{b^{21} 4 b c+5 b c^{2}}{b} \\
& +\frac{5 c^{2} 1 a c}{c} \\
= & \frac{\alpha\left(a-2 b+3 b^{2}\right)}{a}+\frac{b\left(b-4 c+5 c^{2}\right)}{b} \\
& +\frac{\not \subset(5 c-a)}{\varnothing} \\
= & \not \alpha-2 b+3 b^{2}+b-4 c+5 c^{2}+5 c-\not a \\
= & 3 b^{2}+5 c^{2}-b+c
\end{aligned}
$$

Multiple Choice Questions 7

1. Option C is correct.
2. Option D is correct.

When same base are multiplied powers are added.
3. Option B is correct.

The sum of the expression is $x^{4}+x^{3}+4 y^{2}-y$ - $3 x y$.

The largest exponent, the variable has in a polynomial with one variable or for more than one variable is called the degree of the expression. In thin case it is 4.
4. Option B is correct by subtracting $2 x^{2}-10$ from $x^{2}+y^{2}$
5. Option C is correct.

The area of rectangle $=(x+3) \times(x-5)$

$$
=x^{2}-2 x-15
$$

Helpful Hint:

```
n}\mp@subsup{}{}{\mathrm{ th }}\mathrm{ term = a + (n-1)d
```

6. Option B is correct. By using the laws of inequality.
7. Option A is correct.

Algebraic Identities

Exercise 8

1. Find the squares of he following:
(i) $2 a+1$
$(2 a+1)^{2}=(2 a)^{2}+2(2 a)+(1)^{2}$ (using the identity $(a+b)^{2}=a^{2}+2 a b+b^{2}$)
$(2 a+1)^{2}=4 a^{2}+4 a+1$
(ii) $3 b+2 c$

$$
\begin{gathered}
(3 b+2 c)^{2}=(3 b)^{2}+2(3 b)(2 c)+(2 c)^{2} \\
=9 b^{2}+12 b c+4 c^{2}
\end{gathered}
$$

(iii) $2 p^{2}+3 q^{2}$
$\left(2 p^{2}+3 q^{2}\right)^{2}=\left(2 p^{2}\right)^{2}+2\left(2 p^{2}\right)\left(3 q^{2}\right)+\left(3 q^{2}\right)^{2}$
$=4 p^{4}+12 p^{2} q^{2}+9 q^{4}$
2 Simplify:

$$
\begin{aligned}
& \text { Helpful Hint: } \\
& \text { All the sums have been solved by applying } \\
& \text { the identity }(a+b)^{2}=a^{2}+2 a b+b^{2} \text {. } \\
& \text { (i) } 9 p^{2}+12 p q+4 q^{2} \\
& =(3 p)^{2}+2(3 p)(2 q)+(2 q)^{2} \\
& =(3 p+2 q)^{2} \\
& =(3 p+2 q)(3 p+q) \\
& \text { (ii) } 4 x^{2}+4 x y+y^{2} \\
& =(2 x)^{2}+2(2 x)(y)+(y)^{2} \\
& =(2 x+y)^{2} \\
& =(2 x+y)(2 x+y) \\
& \text { (iii) } 25 p^{2}+10 p q+q^{2} \\
& =(5 p)^{2}+2(5 p)(q)+(q)^{2} \\
& =(5 p+q)^{2} \\
& =(5 p+q)(5 p+q) \\
& \text { (iv) } 36 x^{2}+24 x y+4 y^{2} \\
& =(6 x)^{2}+2(6 x)(2 y)+(2 y)^{2} \\
& =(6 x+2 y)^{2} \\
& =(6 x+2 y)(6 x+2 y)
\end{aligned}
$$

(v) $x^{2}+2 x y+y^{2}$

$$
\begin{aligned}
& =(x)^{2}+2(x)(y)+(y)^{2} \\
& =(x+y)^{2} \\
& =(x+y)(x+y)
\end{aligned}
$$

3. Evaluate:
(i) $16 a^{2}+24 a b+9 b^{2}$, When $a=4, b=3$
$=(4 a)^{2}+2(4 a)(3 b)+(3 b)^{2}$
$=(4 a+3 b)^{2}$ (using formula $a^{2}+2 a b+$ $\left.b^{2}=(a+b)^{2}\right)$
$=(4 \times 4+3 \times 3)^{2}$ (substituting $a=4$ and $b=3$)
$=(16+9)^{2}$
$=(25)^{2}$
$=625$
(ii) $4 m^{4}+12 m^{2} n^{2}+9 n^{4}$, When m
$=\frac{1}{2}$ and $n=\frac{1}{3}$
$=4 m^{4}+12 m^{2} n^{2}+9 n^{4}$
$=\left(2 m^{2}\right)^{2}+2\left(2 m^{2}\right)\left(3 n^{2}\right)+\left(3 n^{2}\right)^{2}$ (using formula)
$=\left(2 m^{2}+3 n^{2}\right)^{2}$ (Substitute $m=\frac{1}{2}, n=\frac{1}{3}$)
$=\left(2 \times\left(\frac{1}{2}\right)^{2}+3 \times\left(\frac{1}{3}\right)^{2}\right)^{2}$
$=\left(2 \times \frac{1}{4}+3 \times \frac{1}{9}\right)^{2}$
$=\left(\frac{1}{2}+\frac{1}{3}\right)^{2}$
$=\left(\frac{3+2}{6}\right)^{2}$
$=\left(\frac{5}{6}\right)^{2}$
$=\frac{25}{36}$
4. $p+\frac{1}{p}=5$

Squaring both the sides,

$$
\begin{aligned}
& \quad\left(p+\frac{1}{p}\right)^{2}=(5)^{2} \\
& \left(p^{2}\right)+2 \times p \times \frac{1}{p}+\left(\frac{1}{p}\right)^{2}=25 \\
& p^{2}+2+\frac{1}{p^{2}}=25 \\
& p^{2}+\frac{1}{p^{2}}=25-2 \\
& p^{2}+\frac{1}{p^{2}}=23
\end{aligned}
$$

Hence, the required result is proved.
5. Given that
$a+b=5$ and $a b=4$
Squaring both the sides
$(a+b)^{2}=(5)^{2}$
$a^{2}+2 a b+b^{2}=25$ (using formula)
$a^{2}+2 \times 4+b^{2}$

$$
=25
$$

$a^{2}+b^{2}=25-8$
$a^{2}+b^{2}$

$$
=17
$$

$\left(a^{2}+b^{2}\right)^{2}$

$$
=(17)^{2}
$$

Squaring both the sides
$a^{4}+2 a^{2} b^{2}+b^{4}=289 \quad$ (using formula)
$a^{4}+2 \times(4)^{2}+b^{4}=289$
$a^{4}+32 \times \mathrm{b}^{4}=289$
$a^{4}+b^{4}=289-32=257$
Hence, $a^{2}+b^{2}=17$ and $a^{4}+b^{4}=257$
6. Given that

$$
\begin{array}{ll}
2 a b+5 c d & =5 \text { and } a b c d=1 \\
2 a b+5 c d & =5
\end{array}
$$

Squaring both the sides
$(2 a b+5 c d)^{2}=(5)^{2}$
$(2 a b)^{2}+2(2 a b)(5 c d)+(5 c d)^{2}=25$,
$4 a^{2} b^{2}+20 a b c d+25 c^{2} d^{2}=25$
$4 a^{2} b^{2}+25 c^{2} d^{2}=25-20 a b c d$
$4 a^{2} b^{2}+25 c^{2} d^{2}$
= $25-20 \times 1$
$4 a^{2} b^{2}+25 c^{2} d^{2}$
$=5$
7. (i) 503×503

$$
\begin{aligned}
& =(503)^{2} \\
& =(500+3)^{2} \\
& =(500)^{2}+2(500)(3)+(3)^{2}
\end{aligned}
$$

(using identity $(a+b)^{2}$
$=250000+3000+9$
$=253009$
(ii) 1005×1005
$=(1005)^{2}$
$=(1000+5)^{2}$
$=(1000)^{2}+2(1000)(5)+(5)^{2}$
$=1000000+10000+25$
$=1010025$
(iii) 904×904
$=(904)^{2}$
$=(900+4)^{2}$
$=(900)^{2}+2(900)(4)+(4)^{2}$
$=810000+7200+16$
$=817216$
8. Simplify:

Helpful Hint:

Use identity $a^{2}-2 a b+b^{2}=(a-b)^{2}$.
(i) $9 x^{2}-12 x y+4 y^{2}$
$=(3 x)^{2}-2 \times 3 x \times 2 y+(2 y)^{2}$
$=(3 x-2 y)^{2}$
(ii) $36 a^{2}-24 a+4$
$=(6 a)^{2}-2 \times 6 a \times 2+(2)^{2}$
$=(6 a-2)^{2}$
(iii) $16 x^{2}-8 x y+y^{2}$
$=(4 x)^{2}-2 \times 4 x \times y+(y)^{2}$
$=(4 x-y)^{2}$
(iv) $4 a^{2}-20 a b+25 b^{2}$
$=(2 a)^{2}-2 \times 2 a \times 5 b+(5 b)^{2}$
$=(2 a-5 b)^{2}$
(v) $x^{2}-6 x y+9 y^{2}$
$=(x)^{2}-2 \times x \times 3 y+(3 y)^{2}$
$=(x-3 y)^{2}$
9. (i) $25 a^{2}-10 a+1$, When $\mathrm{a}=\frac{1}{5}$
$25 a^{2}-10 a+1=(5 a)^{2}-2(5 a)(1)+(1)^{2}$
$=(5 a-1)^{2}$ (using formula)
$=\left(5 \times \frac{1}{5}-1\right)^{2}\left(\right.$ putting $a=\frac{1}{5}$
$=(1-1)^{2}=0$
(ii) $4(a+b)^{2}-20(a+b)+25$ when $a=2, b=1$

$$
\begin{aligned}
& =\{2(a+b)\}^{2}-2 \times 2(a+b) \times 5+(5)^{2} \\
& =\{2(a+b)-5\}^{2}
\end{aligned}
$$

Substitute $\mathrm{a}=2, b=1$

$$
=\{6-5)^{2}=1
$$

(iii) $36(l+m)^{2}-48 n(l+m)+16 n^{2}$,

When $l=\frac{1}{2}, m=\frac{1}{3}$ and $n=\frac{1}{4}$
$36(l+m)^{2}-48 n(l+m)+16 n^{2}$
$=\{6(l+m)\}^{2}-2 \times 6(l+m) \times 4 n+(4 n)^{2}$
$=\{6(l+m)-4 n\}^{2}$ (using formula)
$=\left\{6 \times\left(\frac{1}{2}+\frac{1}{3}\right)-4 \times \frac{1}{4}\right\}^{2}$
$=\left\{6 \times \frac{5}{6}-4 \times \frac{1}{4}\right\}^{2}$
$=(5-1)^{2}$
$=(4)^{2}$
$=16$
10. Evaluate:

Helpful Hint:-

Use identity $(a-b)^{2}=a^{2}-2 a b+b^{2}$
(i) 57×57

$$
\begin{aligned}
& =(60-3)(60-3) \\
& =(60-3)^{2}
\end{aligned}
$$

(applying formula)
$=(60)^{2}-2 \times 60 \times 3+(3)^{2}$
$=3600-360+9$
$=3249$
(ii) 994×994
$=(1000-6)(1000-6)$
$=(1000-6)^{2}$
$=(1000)^{2}-2 \times 1000 \times 6+(6)^{2}$
$=1000000-12000+36$
$=988036$
(iii) 9997×9997

$$
\begin{aligned}
& =(10000-3)(10000-3) \\
& =(10000-3)^{2} \\
& =(10000)^{2}-2(10000)(3)+(3)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =100000000-60000+9 \\
& =99940009
\end{aligned}
$$

11. Given $\mathrm{a}-\frac{1}{a}=2$ then show that
(i) $a^{2}+\frac{1}{a^{2}}=6$
$a-\frac{1}{a}=2$
$\left(a-\frac{1}{a}\right)^{2}=(2)^{2}$ (squaring both the sides)
$a^{2}-2 \times a \times \frac{1}{a}+\frac{1}{a^{2}}=4$
$a^{2}+\frac{1}{a^{2}}=4+2$
$a^{2}+\frac{1}{a^{2}}=6$
Hence proved.
(ii)
$a^{4}+\frac{1}{a^{4}}=34$
$a-\frac{1}{a}=2$
(squaring both the sides)
$\left(a-\frac{1}{a}\right)^{2}=4$
$a^{2}+\frac{1}{a^{2}}=6$
(squaring both the sides)
$\left(a^{2}+\frac{1}{a^{2}}\right)^{2}=(6)^{2}$
$a^{4}+2+\frac{1}{a^{4}}=36$
$a^{4}+\frac{1}{a^{4}}=36-2=34$
Hence, proved.
(iii) $\left(a+\frac{1}{a}\right)^{2}=8$
we have
$\left(a-\frac{1}{a}\right)=2$
(squaring both the sides)
$a^{2}-2+\frac{1}{a^{2}}=4$
$a^{2}-2+\frac{1}{a^{2}}+4=4+4$
(adding 4 on both the sides)
$a^{2}+2+\frac{1}{a^{2}}=8$

$$
\left(a+\frac{1}{a}\right)^{2}=8
$$

Hence, proved.
12.

Helpful Hint:

Use the identity $(a+b)(a-b)=a^{2}-b^{2}$
(i) $\quad(a+1)(a-1)\left(a^{2}+1\right)$
$=\left\{(a)^{2}-(1)^{2}\right\}\left(a^{2}+1\right)$ (using identity)
$=\left(a^{2}-1\right)\left(a^{2}+1\right)$
$=\left(a^{2}\right)^{2}-(1)^{2}$
$=a^{4}-1$
(ii) $(a+b)(a-b)\left(a^{2}+b^{2}\right)\left(a^{4}+b^{4}\right)$
$=\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)\left(a^{4}+b^{4}\right)$
$=\left(a^{4}-b^{4}\right)\left(a^{4}+b^{4}\right) \quad$ (using identity)
$=a^{8}-b^{8}$
(iii) $(2 p+3 q)(2 p-3 q)\left(4 p^{2}+9 q^{2}\right)\left(16 p^{4}+81 q^{4}\right)$
$=\left(4 p^{2}-9 q^{2}\right)\left(4 p^{2}+9 q^{2}\right)\left(16 p^{4}+81 q^{4}\right)$
$=\left(16 p^{4}-81 q^{4}\right)\left(16 p^{4}+81 q^{4}\right)$
$=256 p^{8}-6561 q^{8}$
13. $81 p^{2}-49 q^{2}$
$81 p^{2}-49 q^{2}=(9 p-7 q)(9 p+7 q)$
using identity $a^{2}-b^{2}=(a-b)(a+b)$
14. (i) $(3 a+b)(3 a-b)$
$=(3 a)^{2}-(b)^{2}$
$=9 a^{2}-b^{2}$
(ii) $(5 a+3 b)(5 a-3 b)$
$=(5 a)^{2}-(3 b)^{2}$
$=25 a^{2}-9 b^{2}$
(iii) $(2 x+3 y)(2 x-3 y)$
$=(2 x)^{2}-(3 y)^{2}$
$=4 x^{2}-9 y^{2}$

Multiple Choice Questions 8

1. Option D is correct.

Using the identity $(a-b)(a+b)=a^{2}-b^{2}$
2. Option A is correct.

Using the formula for $(a-b)^{2}$ and $(a+b)^{2}$
3. Option D is correct. By multiplying the two expressions.
4. Option A is correct. By substituting the values in the expression.
5. Option B is correct.

Using identity $a^{2}-2 a b+b^{2}=(a-b)^{2}$
$x^{2} y^{2}-\frac{x y}{z}+\frac{1}{4 z^{2}}=\left(x y-\frac{1}{2 z}\right)^{2}$

Factorisation of Algebraic Expressions

Exercise 9A

Resolve into Factors:

1. $p^{2} q+p q^{2}$
$=p q(p+q)$
Taking out common factors.
2. $3 x^{3}-15 x^{2} y$
$=3\left(x^{3}-5 x^{2} y\right)$
$=3 x^{2}(x-5 y)$
3. $45 y^{4}-9 x y^{3}$
$=9\left(5 y^{4}-x y^{3}\right)$
$=9 y^{3}(5 y-x)$
4. $6 p^{2} q+12 p q^{2}$
$=6\left(p^{2} q+2 p q^{2}\right)$
$=6 p q(p+2 q)$
5. $5 a^{4} b^{2}+15 a^{2} b^{4}$
$=5\left(a^{4} b^{2}+3 a^{2} b^{4}\right)$
$=5 a^{2} b^{2}\left(a^{2}+3 b^{2}\right)$
6. $x y+x+y+1$
$=\quad(x y+x)+(y+1)$

$$
\begin{aligned}
& \text { Gelpful Hint: } \\
& \quad=x(y+1)+(y+1) \\
& =\quad(x+1)(y+1)
\end{aligned}
$$

7. $a m^{3}-a m^{2}-m+1$

$$
\begin{aligned}
& =a m^{2}(m-1)-(m-1) \\
& =\quad(m-1)\left(a m^{2}-1\right)
\end{aligned}
$$

8. $4 a^{2}+12 a b+9 b^{2}$

$$
\begin{aligned}
& \text { Using formula } a^{2}+2 a b+b^{2}=(a+b)^{2} \\
& =(2 a)^{2}+2(2 a)(3 b)+(3 b)^{2} \\
& =\quad(2 a+3 b)^{2} \\
& =\quad(2 a+3 b)(2 a+3 b)
\end{aligned}
$$

9. $x^{2}-(p+q) x+p q$

$$
\begin{aligned}
& =\quad x^{2}-p x-q x+p q \\
& =\quad x(x-p)-q(x-p) \\
& =\quad(x-p)(x-q)
\end{aligned}
$$

10. $a b c-a b-c+1$

Helpful Hint:

Taking ab common, from first two terms

$$
=a b(c-1)-(c-1)
$$

Taking $(c-1)$ common,

$$
=\quad(c-1)(a b-1)
$$

11. $(a+b)(p+q+r)+(b+c)(p+q+r)+$
$(c+a)(p+q+r)$
Taking $(p+q+r)$ common, we get
$=\quad(p+q+r)(a+b+b+c+c+a)$
$=\quad(p+q+r)(2 a+2 b+2 c)$
$=\quad 2(a+b+c)(p+q+r)$

Exercise 9B

Resolve into factoris:

1. $x^{2}+y z+x y+x z$

By regrouping,
$=\quad\left(x^{2}+x z\right)+(x y+y z)$
Taking the common factor

$$
\begin{aligned}
& =x(x+z)+y(x+z) \\
& =\quad(x+z)(x+y)
\end{aligned}
$$

2. $5 x^{2}+3 y^{2}+3 x^{2}+5 y^{2}$

By regrouping,
$=\left(5 x^{2}+5 y^{2}\right)+\left(3 x^{2}+3 y^{2}\right)$
$=5\left(x^{2}+y^{2}\right)+3\left(x^{2}+y^{2}\right)$
$=(5+3)\left(x^{2}+y^{2}\right)$
$=8\left(x^{2}+y^{2}\right)$
3. $a b-a d+d b-a c$

By regrouping,
$=\quad(a b+d b)-(a c+c d)$
Taking the common factor,
$=\quad b(a+d)-c(a+d)$
$=\quad(a+d)(b-c)$
4. $a b\left(x^{2}+y^{2}\right)+x y\left(a^{2}+b^{2}\right)$
$=\quad a b x^{2}+a b y^{2}+a^{2} x y+b^{2} x y$
By regrouping,
$=\quad\left(a b x^{2}+a^{2} x y\right)+\left(a b y^{2}+b^{2} x y\right)$
Taking the common factor,
$=\quad a x(b x+a y)+b y(a y+b x)$
$=\quad(b x+a y)(a x+b y)$
$=(a x+b y)(b x+a y)$
5. $a^{2}+a b+8 a+8 b$
$=\quad\left(a^{2}+a b\right)+(8 a+8 b)$
$=\quad a(a+b)+8(a+b)$
$=(a+8)(a+b)$
6. $k l-m n-n l+k m$

By regrouping,

$$
\begin{aligned}
& =\quad(k l+k m)-(n l+m n) \\
& =\quad k(l+m)-n(l+m) \\
& =\quad(k-n)(l+m)
\end{aligned}
$$

7. $5 x^{2}-25 x z-7 x y+35 y z$

By taking common factor,

$$
\begin{aligned}
& =\quad 5 x(x-5 z)-7 y(x-5 z) \\
& =\quad(x-5 z)(5 x-7 y)
\end{aligned}
$$

8. $a^{2} b-2 a(1-b)-4$
$=\quad a^{2} b-2 a+2 a b-4$
Taking common factors,
$=a(a b-2)+2(a b-2)$
$=(a+2)(a b-2)$
9. $x^{2}+13 x+30$

Helpful Hint:
Factorise by breaking the middle terms.
Finding the factors of 30 that add up to 13,

Factors	Sum
$10 \times 3=30$	$10+3=13$
$=$	$x^{2}+(10+3) x+30$
$=$	$x^{2}+10 x+3 x+30$
$=$	$x(x+10)+3(x+10)$
$=$	$(x+10)(x+3)$

10. $x^{2}-20 x+36$

Finding the factors of 36 that add up to -20 ,

Factors	Sum
$-2 \times-18=36$	$-2-18=-20$
$=$	$x^{2}-2 x-18 x+36$
$=$	$x^{2}(x-2)-18(x-2)$
$=$	$(x-2)(x-18)$

11. $x^{2}-(a+b) x+a b$

Expanding the middle term,

$$
=\quad x^{2}-a x-b x+a b
$$

Taking common factors,

$$
\begin{aligned}
& =\quad x(x-a)-b(x-a) \\
& =\quad(x-a)(x-b)
\end{aligned}
$$

12. $x^{2}-19 x+60$

Finding the factors of 60 that add up to -19 ,

Factors
$-15 \times-4=60$
$=x-15-4=-19$
$=x(x-15)-4(x-15)$
$=\quad(x-15)(x-4)$

13. $x^{2}+2 x-15$

Finding the factors of -15 that add up to +2 ,

Factors	Sum
$5 \times-3=-15$	$5-3=2$
$=x x^{2}+5 x-3 x-15$	
$=x(x+5)-3(x+5)$	
$=\quad(x+5)(x-3)$	

14. $x^{2}+5 x-176$

Finding the factors of -176 that add up to 5

Factors	Sum
$16 \times-11=-176$	$16-11=5$

$=x^{2}+16 x-11 x-176$
$=x(x+16)-11(x+16)$
$=(x+16)(x-11)$
15. $a^{2}-24 a-81$

Finding the factors of -81 that add up to -24

Factors	Sum
$-27 \times 3=-81$	$-27+3=-24$

$=a^{2}-27 a+3 a-81$
$=\quad a(a-27)+3(a-27)$
$=(a-27)(a+3)$
16. $p x^{2}+(p q-1) x-q$
$=p x^{2}+p q x-x-q$
Taking common factors,
$=p x(x+q)-1(x+q)$
$=\quad(x+q)(p x-1)$
17. $3 a^{2}-19 a+20$

Multiplying the coefficient of a^{2} and 20,
$3 \times 20=60$
Finding the factors of 60 that add up to -19,

Factors	Sum
$-15 \times-4=60$	$-15-4=-19$
$=3 a^{2}-15 a-4 a+20$	
$=3 a(a-5)-4(a-5)$	
$=(a-5)(3 a-4)$	

18. $6 p^{2}+p-2$

Multiplying the coefficient of p^{2} and the constant term $6 \times-2=-12$
Finding the factors of -12 that add up to 1 ,

Factors	Sum
$4 \times-3=-12$	$4-3=1$

$$
=6 p^{2}+4 p-3 p-2
$$

$=2 p(3 p+2)-1(3 p+2)$
$=(3 p+2)(2 p-1)$
19. $a^{2}+7 p-144$

Finding the factors of -144 that add up to 7 ,

Factors	Sum
$16 \times-9=-144$	$16-9=7$
$=$	$a^{2}+16 a-9 a-144$
$=$	$a(a+16)-9(a+16)$
$=$	$(a+16)(a-9)$

20. $x^{2}+x-72$

Finding the factors of -72 that add up to 1 ,

Factors	Sum
$9 \times-8=-72$	$9-8=1$
$=$	$x^{2}+9 x-8 x-72$
$=$	$x(x+9)-8(x+9)$
$=$	$(x+9)(x-8)$

Multiple Choice Questions 9

1. Option A is correct. (By taking common)
2. Option C is correct. (By grouping)
3. Option D is correct.
4. Option B is correct. (By breaking middle term)
5. Option C is correct. (By taking common)

Linear Equations

Exercise 10A

1. $2 x+5=19$

$$
\begin{aligned}
2 x & =19-5 \text { (by transposition) } \\
2 x & =14 \\
x & =\frac{14}{2} \\
x & =7
\end{aligned}
$$

2. $-7 x+2=23$
$-7 x=23-2 \quad$ (by transposition of 2$)$
$-7 x=21$
$x=-\frac{21}{7}$
$x=-3$
3. $8 x-3=3 x+17$
$8 x-3 x-3=17 \quad$ (by transposition of $3 x$)
$8 x-3 x=17+3$ (by transposition of 3)

$$
5 x=20
$$

$$
x=\frac{20}{5}
$$

$$
x=4
$$

4. $9 x+4=7 x+12$
$9 x-7 x+4=12$ (by transposition)
$9 x-7 x=12-4$ (by transposition)

$$
\begin{aligned}
2 x & =8 \\
x & =4
\end{aligned}
$$

5. $3(6-2 x)+4(5 x-1)=0$

$$
18-6 x+20 x-4=0
$$

$-6 x+20 x=4-18$ (by transposition)
$14 x=-14$

$$
x=\frac{-14}{14}
$$

$$
x=-1
$$

6. $3(x-5)=-2(4-x)$

$$
3 x-15=-8+2 x
$$

$$
3 x-2 x=15-8 \text { (by transposition) }
$$

$$
x=7
$$

$$
\text { 7. } \begin{aligned}
-\frac{6 x}{5}+\frac{2 x}{15} & =-4 \\
\frac{-3 \times 6 x+2 x}{15} & =-4 \\
\frac{-18 x+2 x}{15} & =-4 \\
\frac{-16 x}{15} & =-4
\end{aligned}
$$

By cross multiplying

$$
\begin{aligned}
-16 x & =-4 \times 15 \\
-x & =\frac{-4^{1} \times 15}{16} \\
-x & =-\frac{15}{4} \\
x & =3 \frac{3}{4}
\end{aligned}
$$

8. $\frac{x}{2}-6=8-\frac{2 x}{3}$

$$
\begin{aligned}
\frac{x}{2}+\frac{2 x}{3} & =8+6 \text { (by transposition) } \\
\frac{3 x+4 x}{6} & =14 \\
\frac{7 x}{6} & =14 \\
7 x & =14 \times 6 \\
x & =\frac{214 \times 6}{7_{1}} \\
x & =12
\end{aligned}
$$

9. $\frac{2 x-4}{3}-\frac{3 x+2}{4}=\frac{x-5}{6}-3$

$$
\begin{aligned}
& \frac{2 x-4}{3}-\frac{x-5}{6}=\frac{3 x+2}{4}-3 \\
& \frac{2(2 x-4)-(x-5)}{6}=\frac{(3 x+2)-3 \times 4}{4}
\end{aligned}
$$

$\frac{4 x-8-x+5}{6}=\frac{3 x+2-12}{4}$
$\begin{aligned} \frac{3 x-3}{6} & =\frac{3 x-10}{4} \\ 6(3 x-10) & =4(3 x-3)\end{aligned}$
$18 x-60=12 x-12$
$18 x-12 x=60-12$
$6 x=48$
$\begin{aligned} x & =\frac{48}{6} \\ x & =8\end{aligned}$
10. $\frac{x-2}{3}+\frac{x-5}{4}=\frac{x-5}{6}+\frac{x-7}{8}$

$$
\begin{aligned}
\frac{x-2}{3}-\frac{x-5}{6} & =\frac{x-7}{8}- \\
\frac{2 x-4-x+5}{6} & =\frac{x-7-2 x+10}{8} \\
\frac{x+1}{6} & =\frac{-x+3}{8}
\end{aligned}
$$

By cross multiplying,

$$
\begin{array}{ll}
8(x+1) & =6(-x+3) \\
8 x+8 & =-6 x+18 \\
8 x+6 x & =-8+18 \\
14 x & =10 \\
x & =\frac{10^{5}}{14_{7}} \\
x & =\frac{5}{7}
\end{array}
$$

11. $\frac{x}{a}+\frac{x}{b}=\frac{a^{2}-b^{2}}{a b}$

$$
\frac{b x+a x}{a b}=\frac{a^{2}-b^{2}}{a b}
$$

$$
(b x+a x)=\left(a^{2}-b^{2}\right.
$$

$$
b x+a x=a^{2}-b^{2}
$$

$$
x(a+b)=a^{2}-b^{2}
$$

$$
\begin{array}{ll}
x & =\frac{(a+b)(a-b)}{(a+b)} \\
x & =a-b
\end{array}
$$

$$
2+2+2
$$

12. $8\left(\frac{x}{2}-5\right)=7 x+2$
$8^{4} \times \frac{x}{z}-8 \times 5=7 x+2$
$4 x-40=7 x+2$
$4 x-7 x=2+40$
$-3 x=42$
$-x=\frac{4 x^{14}}{\nexists}$
$-x=14$
$x=-14$
13. $3(2 x+5)-2 x=3(x+6)$
$6 x+15-2 x=3 x+18$
$4 x+15=3 x+18$
$4 x-3 x=18-15$

$$
x=3
$$

14. $5 x+2(2 x-1)=3 x-14$
$5 x+4 x-2=3 x-14$
$9 x-2=3 x-14$
$9 x-3 x=-14+2$
$6 x=-12$
$\begin{aligned} x & =\frac{-1 \not 2^{2}}{6} \\ x & =-2\end{aligned}$
15. $3(x+4)+5(x+3)=2 x-27$

$$
3 x+12+5 x+15=2 x-27
$$

$$
8 x+27=2 x-27
$$

$$
8 x-2 x=-27-27
$$

$$
6 x=-54
$$

$$
x=\frac{-54}{6}
$$

$$
x=-9
$$

16. $a x+\frac{b}{c} \quad=c x+\frac{b}{a}$

$$
\begin{aligned}
a x-c x & =\frac{b}{a}-\frac{b}{c} \\
x(a-c) & =\frac{b c-a b}{a c} \\
x & =\frac{b(c-a)}{a c(a-c)}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{-b(a-c)}{a c(a-c)} \\
& x \quad=-\frac{b}{a c} \\
& \text { 17. } \frac{x-a}{l}+\frac{x-b}{m}=\frac{a l+b m}{l m} \\
& \frac{m(x-a)+l(x-b)}{l m}=\frac{a l+b m}{l m} \\
& \frac{m x-a m+l x-b l}{l m}=\frac{a l+b m}{l m} \\
& m x-a m+l x-b l=\frac{\ln x(a l+\mathrm{b} m)}{\ln l} \\
& (m x+l x)-(a m+b l)=a l+b m \\
& x(m+l)-(a m+b l)=a l+b m \\
& x(m+l)=a l+b m+(a m+b l) \\
& =a l+b m+a m+b l \\
& =\frac{l(a+b)+m(a+b)}{l+m} \\
& =\frac{(a+b)(L+m)}{(L+m)} \\
& x \quad=a+b \\
& \text { 18. } \frac{4 x+3}{9}+\frac{2 x}{5} \\
& =\frac{3 x+2}{15} \\
& \frac{5(4 x+3)+9(2 x)}{45}=\frac{3 x+2}{15} \\
& \frac{20 x+15+18 x}{45}=\frac{3 x+2}{15} \\
& \text { By cross multiplying, } \\
& \text { 19. } \frac{2 x}{3}-\frac{x}{4}=\frac{x}{5}-\frac{x}{6}+23 \\
& \frac{8 x-3 x}{12}=\frac{6 x-5 x}{30}+23 \\
& \frac{5 x}{12}=\frac{x}{30}+23 \\
& \frac{5 x}{12}-\frac{x}{30}=23 \\
& \frac{25 x-2 x}{60}=23 \\
& \begin{array}{ll}
\frac{23 x}{60} & =23 \\
23 x & =23 \times 60
\end{array} \\
& x=\frac{23 \times 60}{23} \\
& x=\frac{23 \times 60}{23} \\
& x=60 \\
& \text { 20. } \frac{x}{a}+\frac{x}{b}+\frac{x}{c}=\frac{a b+b c+c a}{a b c} \\
& \frac{b c x+a c x+a b x}{a b c}=\frac{a b+b c+a c}{a b c} \\
& b c x+a c x+a b x=\frac{a b+b c+c a}{a b c} \times a b c \\
& x(a b+b c+a c)=a b+b c+c a \\
& x=\frac{a b+b c+c a}{a \underline{b}+b c+c a} \\
& x=1 \\
& 21.6-\frac{x-1}{2}-\frac{x-2}{3}=\frac{3-x}{4} \\
& \frac{3-x}{4}+\frac{x-1}{2}+\frac{x-2}{3}=6 \\
& \frac{3(3-x)+6(x-1)+4(x-2)}{12}=6 \\
& \frac{9-3 x+6 x-6+4 x-8}{12}=6 \\
& \frac{6 x+4 x-3 x+9-6-8}{12}=6
\end{aligned}
$$

$$
\begin{aligned}
\frac{7 x-5}{12} & =6 \\
7 x-5 & =6 \times 12 \\
7 x & =72+5 \\
x & =\frac{77}{7} \\
x & =11
\end{aligned}
$$

22. $\frac{x}{4}-\frac{5 x+8}{6}=\frac{2 x-9}{3}$

$$
\frac{3 x-2(5 x+8)}{12}=\frac{2 x-9}{3}
$$

$$
\frac{-7 x-16}{12}=\frac{2 x-9}{3}
$$

$$
3(-7 x-16)=12(2 x-9)
$$

$$
-21 x-48=24 x-108
$$

$$
-21 x-24 x=-108+48
$$

$$
-45 x=-60
$$

$$
x=\frac{60^{4}}{45_{3}}
$$

$$
x=\frac{4}{3}
$$

$$
x=1 \frac{1}{3}
$$

23. $13-\frac{9-x}{11}=\frac{3 x}{22}+12 \frac{1}{2}$

$$
13-\frac{9-x}{11}=\frac{3 x}{22}+\frac{25}{2}
$$

$$
\frac{3 x}{22}+\frac{9-x}{11}=13-\frac{25}{2}
$$

$$
\frac{3 x+2(9-x)}{22}=\frac{26-25}{2}
$$

$$
\frac{3 x+18-2 x}{22}=\frac{1}{2}
$$

$$
\begin{aligned}
3 x-2 x+18 & =22 \times \frac{1}{2} \\
x+18 & =11 \\
x & =-18+11 \\
x & =-7
\end{aligned}
$$

24. $2.25 x-0.125=3 x+3.175$
$2.25 x-3 x=3.175+0.125$
$-0.75 x=3.300$
$-x=\frac{3.300}{0.75}$
$x=-4.4$

Exercise 10B

1. Let x be the number.

$$
\begin{aligned}
7 \text { times of } x & =7 x \\
7 x+3 & =31 \\
7 x & =31-3 \\
7 x & =28 \\
x & \\
x & =\frac{28}{7} \\
x &
\end{aligned}
$$

2. Let the number be x

Three quarter of $x=\frac{3 x}{4}$
Three fifth of $x=\frac{3 x}{5}$

$$
\begin{aligned}
\frac{3 x}{4}-\frac{3 x}{5} & =9 \\
\frac{15 x-12 x}{20} & =9 \\
3 x & =9 \times 20 \\
3 x & =180 \\
x & =60
\end{aligned}
$$

3. Suppose Hena gets Rs x.

3 times of Rs $x=$ Rs $3 x$
Rina gets Rs $(3 x-100)$

$$
\begin{aligned}
x+3 x-100 & =300 \\
4 x & =300+100 \\
4 x & =400 \\
x & =\text { Rs } 100
\end{aligned}
$$

Hence, Hena gets Rs 100 and Rina gets Rs 200.
4. Let each boy get Rs x

Each girl gets Rs $3 x$
Share of 2 boys $=$ Rs $2 x$
Share of 3 girls $=3 x \times 3=$ Rs $9 x$
$\therefore \quad 2 x+9 x=528$
$11 x=528$
$x=48$
Each boy will get Rs 48 .
5. Let the number be x

$(x-3) \times 13$	$=91$
$13 x-39$	$=91$
$13 x$	$=91+39$
$13 x$	$=130$
x	$=\frac{130}{13}$
	$=10$

6. Let the lager number be x

Smaller number will be ($120-x$)
larger number + smaller number $=120$
$2 x=3(120-x)$
$2 x=360-3 x$
$2 x+3 x=360$
$5 x=360$
$x=72$
$\therefore 120-x=120-72=48$
Hence, larger number is 72 and smaller number is 48.
7. Let three consecutive positive integers be $x, x+1$, and $x+2$

$$
\left.\begin{array}{rl}
x+x+1+x+2 & =315 \\
3 x+3 & =315 \\
3 x & =315-3 \\
3 x & =312 \\
\therefore \quad x & =104 \\
\therefore x+1 & =104+1=105 \\
& x+2
\end{array}\right)=104+2=106
$$

$\therefore \quad$ The numbers are $104,105,106$
8. Let the number be x

7 times the number $=7 x$

$630-7 x$	$=3 x$
$10 x$	$=630$
x	$=63$

9. Let Meena's present age $=x$ years

Shaheena's present age $=(40-x)$ year After 10 years;

Meena's age $\quad=(x+10)$ years
Shaheena's age $=(40-x+10)$ years

$$
\begin{array}{rlrl}
\therefore & =(50-x) \text { year } \\
x+10 & & =2(50-x) \\
x+10 & =100-2 x \\
x+2 x & =100-10 \\
3 x & =90 \\
x & =30
\end{array}
$$

\therefore Meena's present age is 30 years
Shaheena's present age is $40-30=10$ years
10. Let the two consecutive odd integers be x and $x+2$, where x is smaller integer and x +2 is larger integer.

$$
\begin{aligned}
\frac{x}{3} & =\frac{x+2}{7}+6 \\
\frac{x}{3} & =\frac{x+2+42}{7} \\
\frac{x}{3} & =\frac{x+44}{7} \\
7 x & =3(x+44) \\
7 x & =3 x+132 \\
4 x & =132 \\
x & =\frac{132}{4}=33 \\
x+2 & =33+2=35
\end{aligned}
$$

$\therefore \quad$ The numbers are 33 and 35 .
11. Let larger number be x.

Smaller number will be $x-6$
Now,

$$
\begin{aligned}
\frac{x}{3}+2 & =\frac{-2}{3}(x-6) \\
\frac{x+6}{3} & =\frac{2}{3} x-\frac{2}{\not P_{1}} \times 6^{2} \\
\frac{x+6}{3} & =\frac{2}{3} x-4 \\
\frac{x+6}{3} & =\frac{2 x-12}{3} \\
x+6 & =2 x-12 \\
2 x-x & =6+12 \\
x & =18
\end{aligned}
$$

Hence,larger number is 18 and smaller number is 12 .
12. Let the number be x

$$
\begin{aligned}
4 x & =x+42 \\
4 x-x & =42 \\
3 x & =42 \\
x & =\frac{42^{14}}{3} \\
x & =14
\end{aligned}
$$

Hence, the required number is 14 .
13. Let the three consecutive multiples of 11 be

$$
\begin{aligned}
x, x+11, x+22 & \\
x+(x+11)+(x+22) & =297 \\
3 x+33 & =297 \\
3 x & =297-33 \\
x & =\frac{264}{3} \\
x & =88
\end{aligned}
$$

Hence, the required consecutive numbers are 88,99 , and 110.
14. Let the cost of the TV set $=$ Rs x

Cost of the DVD player $=\operatorname{Rs}(2 x-1600)$
Now,

$$
\begin{aligned}
2 x-1600+x & =27800 \\
3 x-1600 & =27800 \\
3 x & =27800+1600 \\
& =29400 \\
x & =\frac{29400}{3} \\
& =\operatorname{Rs} 9800
\end{aligned}
$$

\therefore The cost of TV set $=$ Rs 9800
The cost of DVD player $=2 x-1600$

$$
\begin{aligned}
& =2 \times 9800-1600 \\
& =19600-1600 \\
& =\text { Rs } 18,000
\end{aligned}
$$

15. Let the breadth of the rectangle be $x \mathrm{~cm}$

The length of the rectangle is $x+3 \mathrm{~cm}$
Perimeter of a rectangle $=2(l+b)$

$$
\begin{aligned}
30 & =2(x+3+x) \\
30 & =2(2 x+3) \\
30 & =4 x+6 \\
4 x & =30-6 \\
4 x & =24 \\
x & =6 \mathrm{~cm}
\end{aligned}
$$

$\therefore \quad$ Breadth of the rectangle $=6 \mathrm{~cm}$ length of the rectangle $=6+3=9 \mathrm{~cm}$
16. Let the present age of the boy be x years.

$$
\begin{array}{ll}
\text { age after } 4 \text { years } & =x+4 \\
\text { age } 6 \text { years ago } & =x-6 \\
\therefore \quad x+4 & =2(x-6) \\
\therefore \quad x+4 & =2 x-12 \\
2 x-x & =12+4 \\
x & =16
\end{array}
$$

Hence the boy's present age is 16 years.

Exercise 10C

1. (i) Let the number be x.

Twice of the number $=2 x$
Subtracting 13 from twice of the number, we get, the required equation
$\therefore 2 x-13=3$
(ii) Five times a number $=5 x$

Increased by $9=5 x+9$
The required equation is
$5 x+9=39$
(iii) A number subtracted from $5=5-x$

Four times the original number $=4 x$
The required equation is
$5-x=4 x$
(iv) One-fourth of a number $=\frac{x}{4}$
$\therefore \frac{x}{4}=2 \times 5$
The required equation is

$$
\frac{x}{4}=10
$$

(v) twice of number $=2 x$.

The required equation is
$2 x+12=24$
(vi) Six times of a number $=6 x$.

10 more than the number itself $=x+10$
$6 x=x+10$
2. (i) $2 x-7=0$
$2 x-7+7=0+7$
$2 x=7$
$x=\frac{7}{7}$
$\therefore x \quad=3 \frac{1}{2}$
(ii) $8 x-7=5+5 x$
$8 x-7+7=5+5 x+7$
$8 x=5 x+12$
$8 x-5 x=12$

$$
3 x=14
$$

$$
\therefore x \quad=4
$$

(iii) $4(x-1)-(2 x-5)$

$$
\begin{aligned}
4 x-4-2 x+5 & =4 \\
2 x+1 & =4 \\
2 x & =4-1 \\
2 x & =3 \\
\therefore x & =\frac{3}{2} \\
\text { or } x & =1 \frac{1}{2}
\end{aligned}
$$

(iv) $2(x-1)+2=12$

$$
\begin{aligned}
2 x-22+2 & =12 \\
2 x & =12 \\
\therefore x & =6
\end{aligned}
$$

(v) $\frac{x}{9}+\frac{x}{3}=4$

$$
\begin{aligned}
\frac{x}{9}+\frac{4+x}{3 \times 3} & =4 \\
\frac{x}{9}+\frac{3 x}{9} & =4 \\
\frac{4 x}{9} & =4 \\
x & =4 \times \frac{9}{2} \\
\therefore x & =9
\end{aligned}
$$

3. (i) $x-5<1$

$$
\begin{aligned}
& x-5+5<1+5 \\
& x<6
\end{aligned}
$$

Now,

$$
\begin{aligned}
& 4 x<8 \\
& \frac{1}{A} \times 4 x>8^{2} \times \frac{1}{A} \\
& x>2 \\
& \therefore 2<x<6
\end{aligned}
$$

(ii) $2 x+5<15$

$$
\begin{aligned}
2 x+5-5 & <15-5 \\
2 x & <10 \\
\frac{1}{2} \times 2 \times x & <\frac{1}{2} \times 10 \\
x & <5
\end{aligned}
$$

Now, $3 x-2>-5$

$$
\begin{aligned}
3 x-2+2 & >-5+2 \\
3 x & >-3 \\
\frac{1}{3} \times 3 x & >\frac{1}{3} \times(-3) \\
x & >-1 \\
-1 & <x<5
\end{aligned}
$$

(iii) $7 x+4>11$

$$
7 x>11-4
$$

$$
7 x>7
$$

$$
x>1
$$

Now, $3 x \leqslant 9$

$$
\begin{aligned}
x & \leqslant 3 \\
\therefore 3 \geqslant x & >1
\end{aligned}
$$

4. (i) $5-x<-2$

$$
\begin{aligned}
& -x+5-5<2-2 \\
& -x<-7 \\
& -(-x)>-(-7) \\
& \quad x>7
\end{aligned}
$$

Now, $3-x \geq-2$

$$
\begin{aligned}
& 3 x-2+2>-5+2 \\
& -x+-\not 3-3 \geq-2-3 \\
& -x \geq-5 \\
& x \leq 5
\end{aligned}
$$

Now, presenting the solution on a number line.

(ii) $3 x-15 \geq-12$
$3 x+15-15 \geq-12+15$
$3 x \geq 3$
$x \geq 1$

Now, $5 x-3<-8$
$5 x-3+3<-8+3$
$5 x<-5$
$\frac{1}{5} \times 5 x<\frac{1}{5} \times(-5)$
$x<-1$

(iii) $5 x-3<3 x+1$
$5 x+3+3<3 x+1+3$ $5 x<3 x+4$
$5 x-3 x<3 x+4-3 x$
$3 x<4$
$\therefore x<2$

(iv) $2(2 x+3)-10 \leq 6(x-2)$

$$
4 x+6-10 \leq 6 x-12
$$

$$
4 x-4 \leq 6 x-12
$$

$$
4 x-4+4 \leq 6 x-12+4
$$

$$
4 x-6 x \leq 6 x-8
$$

$$
4 x-6 x \leq 6 x-8-6 x
$$

$$
-2 x \leq-8
$$

$$
-x \leq-4
$$

$$
x \geq 4
$$

Exercise 10D

1. (i) $2 x+5 y=24$
$4 x+3 y=20$
Multiply (1) by 2: $4 x+10 y=48$
$4 x+3 y=20$
Subtracting (4) from (3)
$7 y=28$
$y=4$
Substituting $y=4$ in (1), we get,
$2 x+20=24$
$2 x=4$
$x=2$
\therefore the solution set is $x=2, y=4$
(ii) $3 x+y=11$
$9 x+2 y=28$
Multiply (1) by 3
$9 x+3 y=33$ \qquad
$9 x+2 y=28$
Subtracting (3) and (4), we get, $y=5$
Substituting $y=5$ in (1), we get,
$3 x+5=11$

$$
\begin{aligned}
3 x & =6 \\
x & =2
\end{aligned}
$$

\therefore the solution set is $x=2, \mathrm{y}=5$
(iii)

$$
\begin{array}{r}
x+2 y=17 \tag{1}\\
8 x+3 y=45
\end{array}
$$

Multiply (1) by 8

$$
\begin{gather*}
8 x+16 y=136 \tag{3}\\
8 x+3 y=45 \tag{4}\\
\text { Subtracting }(3) \\
13 y=91 \\
y=7
\end{gather*}
$$

\qquad

Subtracting (3) and (4), we get,

Substituting $y=7$ in (2), we get,
$8 x+21=45$
$8 x=24$
$x=3$
\therefore the solution set is $x=3, y=7$
(iv) $2 x+3 y=11$
$3 x+4 y=15$
Multiply (1) by 3
$6 x+9 y=33$ \qquad
Multiply (1) by 2
$6 x+8 y=30$ \qquad
Subtracting (3) and (4), we get, $y=3$
Substituting $y=3$ in (1), we get,
$2 x+9=11$
$2 x=2$
$x=1$
\therefore the solution set is $x=1, y=3$
(v) $x+2 y=-4$ \qquad
$3 x-y=9$ \qquad
$x+2 y=-4$ \qquad
Multiply (2) by 2
$6 x-2 y=18$
Adding (3) and (4), we get,
$7 x=14$
$x=2$
Substituting $x=2$ in (1), we get,
$2+2 y=-4$
$2 y=-6$
$y=-3$
\therefore the solution set is $x=2, y=-3$
2. (i) $3 x+y=10$ \qquad
$x-y=2$ \qquad
Write y in terms of x from (1)
$y=10-3 x$
Substitute in (2), we get,

$$
\begin{aligned}
x-(10-3 x) & =2 \\
x-10+3 x & =2 \\
4 x & =12 \\
x & =3
\end{aligned}
$$

Substituting in (1), we get,
$y=10-9$
$y=1$
\therefore the solution set is $x=3, y=1$
(ii) $x+2 y=8$ \qquad 1)
$2 x+3 y=14$ \qquad (2)

Write x in terms of y from (1)
$x=8-2 y$
Substitute in (2), we get,
$2(8-2 y)+3 y=14$
$16-4 y+3 y=14$
$16-y=14$
$y=2$
Substituting in (1), we get,
$x+4=8$
$x=4$
\therefore the solution set is $x=4, y=2$
(iii) $7 x+2 y=19$
$x-y=4$ \qquad
Write x in terms of y from (2)
$x=4+y$
Substituting in (1), we get,
$7(4+y)+2 y=19$
$28+7 y+2 y=19$
$9 y=-9$
$y=-1$
Substituting in (2), we get,
$x-(-1)=4$
$x=3$
\therefore the solution set is $x=3, y=-1$
(iv) $2 x+y=13$ \qquad
$5 x+4 y=13$
Write y in terms of x from (1)
$y=13-2 x$
Substituting in (2), we get,
$5 x+52-8 x=13$
$-3 x=13-52$
$-3 x=-39$
$x=13$
Substituting in (1), we get,
$y=13-26$
$y=-13$
\therefore the solution set is $x=13, y=-13$

Multiple Choice Questions 10

1. Option B is correct.
2. Option D is correct.

3. Option B is correct.

Helpful Hint:
Hint: $x-15=\frac{3}{4} x$
4. Option B is correct.
5. Option C is correct.

$$
\text { Gradient of } y=m x+c \text { is } m=\frac{3}{4}
$$

6. Option C is correct. $P=2(l+7)$

Revision 3: Algebra

1. Given $a=2, b=1$ and $c=-\frac{1}{2}$
(i) $\left(2 a b^{2} c\right)\left(3 a^{2} b c\right)$
$=6 a^{3} b^{3} c^{2}$
(substituting the values)

$$
\begin{aligned}
& =6 \times(2)^{3} \times(1)^{3} \times\left(-\frac{1}{2}\right)^{2} \\
& =6 \times 8^{2} \times 1 \times \frac{1}{4_{1}}
\end{aligned}
$$

Hence, product $=6 a^{3} b^{3} c^{2}$
Numerical value $=12$
(ii) $\left(-\frac{2}{3} a^{3} b c^{2}\right)(12 a b c)$

$$
\begin{aligned}
& =-\frac{2}{z_{1}} \times 12^{4} \times a^{4} b^{2} c^{3} \\
& =-8 a^{4} b^{2} c^{3}
\end{aligned}
$$

(substituting the values)

$$
\begin{aligned}
& =-8(2)^{4}(1)^{2}\left(-\frac{1}{2}\right)^{3} \\
& =-8 \times 16^{2} \times 1 \times-\frac{1}{{ }_{1}}=16
\end{aligned}
$$

Hence, product $-8 a^{4} b^{2} c^{3}$
Numerical value $=16$
(iii) $\left(-2 a^{2} b c\right)\left(-\frac{4}{5} a b c^{2}\right)\left(\frac{5}{16} a b^{2} c\right)$

$$
\begin{aligned}
& =-2^{1} \times-\frac{4^{1}}{5} \times \frac{5}{16} \times a^{4} \times b^{4} \times c^{4} \\
& =\frac{1}{2} a^{4} b^{4} c^{4} \\
& =\frac{1}{2}(2)^{4}(1)^{4}\left(-\frac{1}{2}\right)^{4} \\
& =\frac{1}{2} \times 16 \times 1 \times \frac{1}{16}=\frac{1}{2}
\end{aligned}
$$

Hence, product $=\frac{1}{2} a^{4} b^{4} c^{4}$
numerical value $=\frac{1}{2}$
2. (i) $2 a(3 b+c)$

$$
\begin{aligned}
& =2 a \times 3 b+2 a \times c \\
& =6 a b+2 a c
\end{aligned}
$$

(ii) $-7 a\left(4 a^{2}-3 b^{2}\right)$
$=-7 a \times 4 a^{2}+7 a \times 3 b^{2}$

$$
=-28 a^{3}+21 a b^{2}
$$

(iii) $5 a b(5+a+b)$

$$
=5 a b \times 5+5 a b \times a+5 a b \times b
$$

$=25 a b+5 a^{2} b+5 a b^{2}$
$=5 a^{2} b+25 a b+5 a b^{2}$
(iv) $-3 a^{2}\left(a^{2}-b^{2}+2 c^{2}\right)$
$=-3 a^{2} \times a^{2}+3 a^{2} \times b^{2}-3 a^{2} \times 2 c^{2}$
$=-3 a^{4}+3 a^{2} b^{2}-6 a^{2} c^{2}$
3. Simplify:
(i) $2 a^{3}\left(a^{3}-a^{2}+4\right)+2 a^{5}\left(a^{2}+5 a+1\right)$
$=2 a^{3} \times a^{3}-2 a^{3} \times a^{2}+4 \times 2 a^{3}+2 a^{5} \times a^{2}$ $+2 a^{5} \times 5 a+2 a^{5}$
$=2 a^{6}-2 a^{5}+8 a^{3}+2 a^{7}+10 a^{6}+2 a^{5}$
$=2 a^{7}+12 a^{6}+8 a^{3}$
(ii) $x^{3}(x+3)+x^{2}\left(x^{2}+2\right)-x\left(2 x^{3}-1\right)$

$$
\begin{aligned}
& =x^{4}+3 x^{3}+x^{4}+2 x^{2}-2 x^{4}+x \\
& =2 x^{4}+3 x^{3}+2 x^{2}+x-2 x^{4} \\
& =3 x^{3}+2 x^{2}+x
\end{aligned}
$$

(iii) $(a-1)\left(a^{2}+a+1\right)-(a+1)\left(a^{2}-a+1\right)$
$=a\left(a^{2}+a+1\right)-1\left(a^{2}+a+1\right)$ $-a\left(a^{2}-a+1\right)-1\left(a^{2}-a+1\right)$
$=a^{3}+q^{2}+\not q-q^{2}-\not \alpha^{2}-1-\not \alpha^{3}+\not a^{2}-\not q-q^{2}+\not q-1$
$=-1-1=-2$
4. Multiply:
(i) $(3 x+2)$ and $(x-1)$

$$
\begin{aligned}
& (3 x+2)(x-1) \\
& =3 x(x-1)+2(x-1) \\
& =3 x^{2}-3 x+2 x-2 \\
& =3 x^{2}-x-2
\end{aligned}
$$

(ii) $(5 x-7)$ and $(3 x+5)$

$$
\begin{aligned}
= & (5 x-7)(3 x+5) \\
= & 5 x(3 x+5)-7(3 x+5) \\
= & 15 x^{2}+25 x-21 x-35 \\
& 15 x^{2}+4 x-35
\end{aligned}
$$

(iii) $(2 x-5 y)$ and $(7 x+3 y)$
$=(2 x-5 y)(7 x+3 y)$
$=2 x(7 x+3 y)-5 y(7 x+3 y)$
$=14 x^{2}+6 x y-35 x y-15 y^{2}$
$=14 x^{2}-29 x y-15 y^{2}$
(iv) $(x+a b)$ and $(2 x-7 a b)$
$=(x+a b)(2 x-7 a b)$
$=x(2 x-7 a b)+a b(2 x-7 a b)$
$=2 x^{2}-7 a b x+2 a b x-7 a^{2} b^{2}$
$=2 x^{2}-5 a b x-7 a^{2} b^{2}$
(v) $\left(\frac{a^{3}}{3}-\frac{a b}{2}\right)$ and $(a+b)$

$$
\begin{aligned}
& =\left(\frac{a^{3}}{3}-\frac{a b}{2}\right)(a+b) \\
& =\frac{a^{3}}{3}(a+b)-\frac{a b}{2}(a+b) \\
& =\frac{a^{4}}{3}+\frac{a^{3} b}{3}-\frac{a^{2} b}{2}-\frac{a b^{2}}{2}
\end{aligned}
$$

(vi) $\left(3 a^{2}-4\right)$ and $\left(4 a^{2}+1\right)$

$$
\begin{aligned}
& =\left(3 a^{2}-4\right)\left(4 a^{2}+1\right) \\
& =3 a^{2}\left(4 a^{2}+1\right)-4\left(4 a^{2}+1\right) \\
& =12 a^{4}+3 a^{2}-16 a^{2}-4 \\
& =12 a^{4}-13 a^{2}-4
\end{aligned}
$$

5. $(x+a)(x+b)=x^{2}+(a+b) x+a b$

By applying the above formula, we get, $(m+4)(m-3)=m^{2}+(4-3) m+(4)(-3)$

$$
=m^{2}+m-12
$$

$=(-2)^{2}+(-2)-12$, when $m=-2$
$=4-2-12=-10$
Hence $(m+4)(m-3)=m^{2}+m-12$
Numerical value $=-10$
6. Given:
$(x+a)(x+b)(x+c)=x^{3}+(a+b+c) x^{2}+$ $(a b+b c+c a) x+a b c$
$(p+1) p-2)(P+3)=p^{3}+(1-2+3) p^{2}+$ $(-2-6+3) p+(-6)$
$=p^{3}+2 p^{2}-5 p-6$
Numerical value when $p=-1$
$=(-1)^{3}+2(-1)^{2}-5(-1)-6$
$=-1+2+5-6$
$=-7+7=0$
7. For the following sums, use the rule
$(a+b)(a-b)=a^{2}-b^{2}$
(i) $(3 a+2)(3 a-2)$
$=(3 a)^{2}-(2)^{2}$
$=9 a^{2}-4$
(ii) $(4 x+5)(4 x-5)$
$=(4 x)^{2}-(5)^{2}$
$=16 x^{2}-25$
(iii) $\left(\frac{1}{3} x+\frac{1}{2} y\right)\left(\frac{1}{3} x-\frac{1}{2} y\right)$
$=\left(\frac{1}{3} x\right)^{2}-\left(\frac{1}{2} y\right)^{2}$
$=\frac{1}{9} x^{2}-\frac{1}{4} y^{2}$
(iv) $\left(2 a^{2}+3 b^{2}\right)\left(2 a^{2}-3 b^{2}\right)$
$=\left(2 a^{2}\right)^{2}-\left(3 b^{2}\right)^{2}$
$=4 a^{4}-9 b^{4}$
8. (i) $(3 a-5 b)^{2}$

Using identity $(a-b)^{2}=a^{2}-2 a b+b^{2}$
$(3 a-5 b)^{2}=(3 a)^{2}-2(3 a)(5 b)+(5 b)^{2}$
$=9 a^{2}-30 a b+25 b^{2}$
(ii) $(a b c-2)^{2}=(a b c)^{2}-2(a b c)(2)+(2)^{2}$

$$
=a^{2} b^{2} b c^{2}-4 a b c+4
$$

(iii) $(2 a+3 b-c)^{2}$
let $2 a+3 b=x$
Then, $(x-c)^{2}=x^{2}-2 x c+c^{2}$
Putting $x=2 a+3 b$

$$
\begin{aligned}
& =(2 a+3 b)^{2}-2(2 a+3 b) c+c^{2} \\
& =\left(4 a^{2}+12 a b+9 b^{2}\right)-(4 a+6 b) c+c^{2} \\
& =4 a^{2}+12 a b+9 b^{2}-4 a c-6 b c+c^{2} \\
& =4 a^{2}+9 b^{2}+c^{2}+12 a b-6 b c-4 a c
\end{aligned}
$$

(iv) $(x-2 y+3 z)^{2}$

Let $x-2 y=a$
$(a+3 z)^{2}=a^{2}+6 a z+9 z^{2}$
Put $a=x-2 y$
$=(x-2 y)^{2} 6(x-2 y) z+9 z^{2}$

$$
\begin{aligned}
& =x^{2}-4 x y+4 y^{2}+6 x z-12 y z+9 z^{2} \\
& =x^{2}+4 y^{2}+9 z^{2}-4 x y-12 y z+6 x z
\end{aligned}
$$

9. Length of the room $=(3 x+1)$
breath of the room $=(2 x-1)$
height of the room $=(x+3)$
(i) Area of the floor $=(3 x+1)(2 x-1)$

$$
=6 x^{2}-3 x+2 x-1
$$

$$
=\left(6 x^{2}-x-1\right) \text { sq. units }
$$

(ii) Total area of the four walls

Helpful Hint:
Dimension of opposite walls will be the same.

Length and breadth of the walls change, while height will remain same.

Area of two opposite walls $=2$ (length \times height)

$$
\begin{aligned}
& =2(3 x+1)(x+3) \\
& =2\left(3 x^{2}+9 x+x+3\right) \\
& =2\left(3 x^{2}+10 x+3\right) \\
& =\left(6 x^{2}+20 x+6\right) \text { sq. units }
\end{aligned}
$$

Area of other opposite walls

$$
\begin{aligned}
& =2(x+3)(2 x-1) \\
& =2\left(2 x^{2}+6 x-x-3\right) \\
& =\left(4 x^{2}+12 x-2 x-6\right) \\
& =\left(4 x^{2}+10 x-6\right) \text { sq. units }
\end{aligned}
$$

Total area of 4 walls
$=6 x^{2}+20 x+6+4 x^{2}+10 x-6$
$=\left(10 x^{2}+30 x\right)$ sq. units
(iii) Volume of the room $=l x b x h$
$=(3 x+1)(2 x-1)(x+3)$
$=(3 x+1)\left(2 x^{2}+5 x-3\right)$
$=6 x^{3}+15 x^{2}-9 x+2 x^{2}+5 x-3$
$=\left(6 x^{3}+17 x^{2}-4 x-3\right)$ cubic units
(iv) In part (iv) we have calculated the surface area of four walls. Now, we will calculate the surface area of floor and ceiling.
Total surface area of 4 walls $=\left(10 x^{2}+30 x\right)$
sq. units
Surface area of floor $=(3 x+1)(2 x-1)$
$=\left(6 x^{2}-3 x+2 x-1\right)$
$=\left(6 x^{2}-x-1\right)$ sq. units

Area of ceiling is same as area of floor
\therefore Area of ceiling $=\left(6 x^{2}-x-1\right)$ sq. units
\therefore Total surface area of room $=$
Area of four walls + Area of ceiling + area of floor
$=\left(10 x^{2}+30 x\right)+\left(6 x^{2}-x-1\right)+\left(6 x^{2}-x-1\right)$
$=10 x^{2}+30 x+6 x^{2}-x-1+6 x^{2}-x-1$
$=\left(22 x^{2}+28 x-2\right)$ sq. units
10. Perimeter of a rectangle $=(6 x+2)$ units Length of the rectangle $=(2 x-3)$ units
Perimeter of a rectangle $=2(l+b)$

$6 x+2$	
$6 x+2$	
$2 b$	$=2(2 x-3+b)$
$2 b$	
$2 b$	$=6 x+2-4 x+6$
$2 b$	
b	

Breadth of the rectangle $=(x+4)$ unit Area of rectangle $=l \times b$
$=(2 x-3)(x+4)$
$=2 x^{2}+8 x-3 x-12$
$=\left(2 x^{2}+5 x-12\right)$ sq. units

Helpful Hint:

$$
(x+y)(x-y)=x^{2}-y^{2}
$$

11. (i) 51×51

$$
(50+1)(50+1)
$$

$=\quad(50+1)^{2}$
using identity $(a+b)^{2}=a^{2}+2 a b+b^{2}$

$$
\begin{aligned}
(50+1) & =(50)^{2}+2(50)(1)+(1)^{2} \\
& =2500+100+1=2601
\end{aligned}
$$

(ii) $102+102$

$$
\begin{aligned}
= & (100+2)(100+2) \\
& =(100+2)^{2} \\
= & (100)^{2}+2(100)(2)+(2)^{2} \\
\text { using } & (a+b)^{2}=a^{2}+2 a b+b^{2} \\
= & 10000+400+4=10404
\end{aligned}
$$

(iii) 97×97

$$
\begin{aligned}
& =(100-3)(100-3) \\
& \text { using }(a-b)^{2}=a^{2}-2 a b+b^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =(100)^{2}-2(100)+(3)^{2} \\
& =10000-600+9=9409
\end{aligned}
$$

(iv) 1004×1004

$$
\begin{aligned}
& =(1000+4)(1000+4) \\
& =(1000+4)^{2} \\
& =(1000)^{2}+2(1000)(4)+(4)^{2} \\
& =1000000+8000+16 \\
& =1008016
\end{aligned}
$$

(v) 103×97

$$
\begin{aligned}
& =(100+3)(100-3) \\
& =(100)^{2}-(3)^{2}
\end{aligned}
$$

using $(a+b)(a-b)=a^{2}-b^{2}$

$$
=10000-9=9991
$$

(vi) $(71)^{2}-(29)^{2}$

$$
\begin{aligned}
& =(71+29)(71-29) \\
& =(100)(42)=4200
\end{aligned}
$$

(vii) $(142)^{2}-(58)^{2}$

$$
\begin{aligned}
& =(142+58)(142-58) \\
& =(200)(84)=16800
\end{aligned}
$$

12. (i) $\frac{x+2}{3}$

$$
=\frac{2 x+3}{4}
$$

Cross multiplying

$$
\begin{aligned}
4(x+2) & =3(2 x+3) \\
4 x+8 & =6 x+9 \\
2 x & =-1 \\
x & =-\frac{1}{2}
\end{aligned}
$$

(ii) $\frac{x}{2}+3=\frac{x}{3}+4$

$$
\frac{x}{2}-\frac{x}{3}=4-3
$$

$$
\frac{3 x-2 x}{6}=1
$$

$$
\frac{x}{6} \quad=1
$$

$$
x=6
$$

(iii) $0.3 x+4=0.7 x+8$
$0.7 x-0.3 x=4-8$
$0.4 x=-4$
$\frac{4 x}{10}$
$=-4$
$4 x=-40$ $x=-10$
13. Let the number be x

| $5 x-27$ | | $=13$ |
| ---: | :--- | ---: | :--- |
| $5 x$ | | $=13+27$ |
| $5 x$ | | $=40$ |
| x | | $=8$ |

14. (i) $(78-72)(78+72)=12 x$

$$
\begin{array}{ll}
x & =\frac{6 \times 150}{12} \\
x & =75
\end{array}
$$

\therefore Option B is correct
(ii) $\left(p+\frac{1}{p}\right)^{2}=2^{2}$
$p^{2}+2+\frac{1}{p^{2}}=4$
$p^{2}+\frac{1}{p^{2}} \quad=2$
Option C is correct.
(iii) $\left(m-\frac{1}{m}\right)^{2} \quad=n^{2}$
$m^{2}-2+\frac{1}{m^{2}} \quad=n^{2}$
$m^{2}+\frac{1}{m^{2}} \quad=n^{2}+2$
Option A is correct.
(iv) $\left(m-\frac{1}{m}\right)^{2}=2^{2}$
$m^{2}-2+\frac{1}{m^{2}}=4$
$m^{2}+2+\frac{1}{m^{2}}-4=4$

$$
\left(m+\frac{1}{m}\right)^{2}=4+4=8
$$

Option D is correct.
(v) $(x+y)^{2}=x^{2}+2 x y+y^{2}$

$$
=x^{2}+y^{2}+2 x y
$$

Substituting the values, we get
$(x+y)^{2}=14+2 \times 1$
$(x+y)^{2}=16$
$\therefore(x+y)=4$
Option C is correct.
15. (i) $a^{2}\left(a^{2}+a+1\right)-a^{2}\left(a^{2}-a+1\right)$
$=q^{2}+a^{3}+q^{2}-\not q^{4}+a^{3}-\not q^{2}$
$=2 a^{3}$
(ii) $(2 x+7)(3 x-1)$

Multiply the expressions.
$=2 x(3 x-1)+7(3 x-1)$
$=6 x^{2}-2 x+21 x-7$
$=6 x^{2}+19 x-7$
(iii) Area of a square $=(\text { side })^{2}$
$=(3 a+b c)(3 a+b c)$
$=(3 a+b c)^{2}$
Applying the identify,
$=(3 x)^{2}+2(3 a)+(b c)^{2}$
$=9 a^{2}+6 a b c+b^{2} c^{2}$
\therefore Area $=\left(9 a^{2}+6 a b c+b^{2} c^{2}\right)$ sq. units
(iv) Dimensions of the room are
$(x+1),(x-1)_{1}$ and x units
let length $=(x+1)$ unit
breadth $=(x+1)$ unit
height $=x$ unit
Let W_{1} and W_{2} be pair of opposite
walls. Similarly, W_{3} and W_{4} be another pair of opposite walls.
Area of $\mathrm{W}_{1}=x(x+1)$
$=x\left(x^{2}+x\right)$ sq. units
Also, area of $\mathrm{W}_{2}=\left(x^{2}+x\right)$ sq. units
Area of $\mathrm{W}_{3}=x(x-1)$
$=\left(x^{2}-x\right)$ sq. units
Also, area of $\mathrm{W}_{4}=\left(x^{2}-x\right)$ sq. units
Total area of 4 walls

$$
\begin{aligned}
& =\left(x^{2}+x\right)+\left(x^{2}+x\right)+\left(x^{2}-x\right)+\left(x^{2}+x\right) \\
& =4 x^{2}+2 x-2 x \\
& =4 x^{2} \text { sq. units }
\end{aligned}
$$

(v) $\left(\frac{1}{2} x+\frac{2}{3} y\right)\left(\frac{1}{2} x-\frac{2}{3} y\right)$

Helpful Hint:
Use the identity $(a+b)(a-b)=a^{2}-b^{2}$

$$
\begin{aligned}
\therefore\left(\frac{1}{2}\right. & \left.x+\frac{2}{3} y\right)\left(\frac{1}{2}-\frac{2}{3} y\right) \\
& =\left(\frac{1}{2} x\right)^{2}-\left(\frac{2}{3} y\right)^{2} \\
& =\frac{1}{4} x^{2}-\frac{4}{9} y^{2}
\end{aligned}
$$

16. (i)

Helpful Hint:

Use the identity $(a+b)^{2}=a^{2}+2 a+b^{2}$
$(91)^{2}=(90+1)^{2}$

$$
=(90)^{2}+(1)(90)+(1)^{2}
$$

$$
=8100+180+1
$$

$$
=8281
$$

(ii)

Helpful Hint:

Use the identity $(a+b)^{2}=a^{2}-2 a b+b^{2}$

$$
\begin{aligned}
199 \times 199 & =(200-1)(200-1) \\
& =(200-1)^{2} \\
& =(200)^{2}-2(200)(1)+1 \\
& =40000-400+1 \\
& =39601
\end{aligned}
$$

(iii)

Helpful Hint:
Use the identity $(a+b)(a-b)=a^{2}-b^{2}$

$$
\begin{aligned}
507 \times 493 & =(500+7)(500-7) \\
& =(500)^{2}-(7)^{2} \\
& =250000-49 \\
& =249951
\end{aligned}
$$

17. Let the denominator be x
numerator will be $x-5$
Now, $\frac{x-5}{x-1}=\frac{1}{3}$

$$
\begin{aligned}
3(x-5) & =(x-1) \text { by cross multiplying } \\
3 x-15 & =x-1 \\
2 x & =14 \\
x & =7
\end{aligned}
$$

Hence, denominator $=7$

$$
\text { numerators }=7-5=2
$$

\therefore Required fraction is $\frac{2}{7}$
18. $9 x^{2}-102 x+290$

Substituting the value of $x=5 \frac{2}{3}=\frac{17}{3}$

$$
\begin{aligned}
& =\quad 9 \times \frac{17}{7} \times \frac{17}{\not 7}-10^{34} \times \frac{17}{3}+290 \\
& =\quad 289-578+290 \\
& =\quad 579-578 \\
& =\quad 1
\end{aligned}
$$

19. $x-\frac{x-2}{2}=1-\frac{x-3}{2}$

Taking LCM of both the sides,
$\frac{2 x-x+2}{2}=\frac{2-x+3}{2}$
By cross multiplying,

$$
\begin{aligned}
2(2 x-x+2) & =2(2-x+3) \\
2(x+2) & =2(5-x) \\
2 x+4 & =10-2 x \\
2 x+2 x & =10-4 \\
4 x & =6 \\
x & =\frac{6^{3}}{A_{2}} \\
x & =\frac{3}{2} \\
\therefore x & =1 \frac{1}{2}
\end{aligned}
$$

20. Let the positive number be x

Twice of number $=2 x$
One-third of the number $=\frac{x}{3}$
Now,

$$
\begin{aligned}
2 x & =\frac{x}{3}+25 \\
2 x-\frac{x}{3} & =25 \\
\frac{6 x-x}{3} & =25 \\
5 x & =25 \times 3 \\
x \quad & =\frac{25 \times 3}{5} \\
\therefore x \quad & =15
\end{aligned}
$$

21. (i) $5 p q\left(-3 p^{2} q r^{3}\right)\left(-\frac{2}{15} q^{2}\right)$

Reducing the given polynomial in monomial,
$=5 \times(-\not-3)\left(-\frac{2}{15}\right) p^{3} q^{4} r^{4}$
$=2 p^{3} q^{4} r^{4}$
Now, substituting $p=-1, q=1$ and $r=2$
$=2(-1)^{3}(1)^{4}(2)^{4}$
$=2 \times(-1) \times 1 \times 16$
$=-32$
(ii) $4 x^{2}-3 x(x-2)-x(x+2)$
$=4 x^{2}-3 x^{2}+6 x-x^{2}-2 x$
$=4 x^{2}-4 x^{2}+6 x-2 x$
$=4 x$
22. (i) $(3 a-2 b)^{2}$

Using identity $(a-b)^{2}-2 a b+b^{2}$
$=(3 a)^{2}-2(3 a)(2 b)+(2 b)^{2}$
$=9 a^{2}-12 a b+4 b^{2}$
(ii) $\left(5 a^{2}-3 b^{3}\right)^{2}$
$=\left(5 a^{2}\right)^{2}-2\left(5 a^{2}\right)\left(3 b^{2}\right)+\left(3 b^{3}\right)^{2}$
$=25 a^{4}-30 a^{2} b^{3}+9 b^{6}$
23. (i) $(196)^{2}$
$=(200-4)^{2}$
$=(200)^{2}-2(200)(4)+(4)^{2}$
$=40000-1600+16$
$=38416$
(ii) $(405)^{2}$
$=(400+5)^{2}$
$=(400)^{2}+2(400)(5)+(5)^{2}$
$=160000+4000+25$
$=164025$
(iii) 103×97

Using the identity $(a+b)(a-b)=a^{2}-b^{2}$
$\therefore 103 \times 97$
$=(100+3)(100-3)$
$=(100)^{2}-(3)^{2}$
$=10000-9$
= 9991
24. (i) $16 x^{2}-24 x+10$

Substituting $x=\frac{3}{4}$,
$=16 \times \frac{3}{4} \times \frac{3}{4}-24 \times \frac{3}{4}+10$
$=9-18+10$
$=1$
(ii) $(87)^{2}-(63)^{2}=15 x$

Using identify $a^{2}-b^{2}=(a+b)(a-b)$,
RHS becomes,

$(87+63)(87-63)$	$=15 x$
$15 x$	$=150 \times 24$
$15 x$	$=3600$
x	$=\frac{3600}{15}$
$\therefore x$	
$\therefore x$	

25. $x-\frac{1}{x}=3$

Taking square of both the sides,
$\left(x-\frac{1}{x}\right)^{2}=(3)^{2}$
$x^{2}-2(\not y)\left(\frac{1}{x}\right)+\left(\frac{1}{x}\right)^{2}=9$
$x^{2}+\frac{1}{x^{2}}=9+2$
$x^{2}+\frac{1}{x^{2}}=11$
26. Taking the square of $x-y$
$(x-y)^{2}=x^{2}-2 x y+y^{2}$
$=x^{2}+y^{2}-2 x y$
By substituting $x^{2}+y^{2}=27$ and $x y=1$

$$
\begin{aligned}
(x-y)^{2} & =27-2 \times 1 \\
& =27-2 \\
& =25
\end{aligned}
$$

$$
\therefore x-y=\sqrt{25}
$$

$$
= \pm 5
$$

27. For a square field, the two dimension should be equal.
So, $2 x+3=3 x-7$

$$
3 x-2 x=3+7
$$

$$
x=10
$$

For $x=10$, units the field will be a square.
28. $\frac{2 x-1}{3}+4=\frac{3 x+1}{4}$

$$
\begin{aligned}
& \frac{2 x-1+12}{3}=\frac{3 x+1}{4} \\
& \frac{2 x+11}{3}=\frac{3 x+1}{4}
\end{aligned}
$$

By cross multiplying,

$$
\begin{aligned}
4(2 x+11) & =3(3 x+1) \\
8 x+44 & =9 x+3 \\
9 x-8 x & =44-3 \\
x & =41
\end{aligned}
$$

29. Let Shazia's present age be ' x ' years

Four years ago Shazia's age $=x-4$ years
Four years ago Nadra's age was $2(x-4)$ years Now, $2(x-4)-(x-4)=11$ years

$$
\begin{aligned}
x-4 & =11 \text { years } \\
x & =15 \text { years }
\end{aligned}
$$

\therefore Shazia's present age is 15 years
30. (i) Option A is correct because the variable in linear equation has power 1.
(ii) Option B is correct.
(iii) Option D is correct.

Helpful Hint:-

Solve (iii) by substituting the values.
(iv) Option C is correct.

```
        Helpful Hint:
\(x+13=5\)
    8
```

31. The sequence is $120,135,150, \ldots$

Given $a_{1}=120, a_{2}=135, a_{3}=150$
$d=15$

Compartment	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	\ldots	$13^{\text {th }}$
Passengers	120	135	150		$?$

$a_{\mathrm{n}}=a_{1}+(n-1) d$

$$
a_{13}=120+(13-1) \times 15
$$

$$
=120+12 \times 15
$$

$$
=120+180
$$

$$
=300
$$

$\therefore 300$ passengers will travel in $13^{\text {th }}$ compartment.
32. The sequence is $250,270,290, \ldots$

Given $a_{1}=250, a_{2}=270, a_{3}=290$
$d=20$

Minute	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	\ldots	$7^{\text {th }}$
Distance (m)	250	270	290	\ldots	$?$

$a_{\mathrm{n}}=a_{1}+(n-1) d$
$a_{2}=250+(7-1) \times 20$
$=250+6 \times 20$
$=250+120$
$=370 \mathrm{~m}$
\therefore The car will travel 370 m in $7^{\text {th }}$ minute.
33. The sequence is $500,545,590$

Given $a_{1}=500, a_{2}=545, a_{3}=590$
$d=45$

Week	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	\ldots	$8^{\text {th }}$	\ldots	$10^{\text {th }}$
Earning (Rs)	500	545	590	\ldots	$?$	\ldots	$?$

$$
\begin{aligned}
a_{\mathrm{n}} & =a_{1}+(n-1) d \\
a_{8} & =500+(8-1) \times 45 \\
& =500+7 \times 45 \\
& =500+315 \\
& =\operatorname{Rs} 815 \\
a_{10} & =500+(10-1) \times 45 \\
& =500+9 \times 45 \\
& =500+405 \\
& =\text { Rs } 905
\end{aligned}
$$

\therefore He will earn Rs 815 in $8^{\text {th }}$ week and Rs 905 in $10^{\text {th }}$ week.
34. The sequence is $32,40,48, \ldots$

Given $a_{1}=32, a_{2}=40, a_{3}=48$
$d=8$

Rows	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	\ldots	$9^{\text {th }}$
Seats	32	40	48	\ldots	$?$

$a_{\mathrm{n}}=a_{1}+(\mathrm{n}-1) d$
$a_{9}=32+(9-1) \times 8$
$=32+8 \times 8$
$=32+64$
$=96$ seats
\therefore there will be 96 seats in $9^{\text {th }}$ row.
35. The sequence is $53,60,67$

Given $a_{1}=53, a_{2}=60, a_{3}=67$
$d=7$

Floor	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	\ldots	$15^{\text {th }}$
People	53	60	67	\ldots	$?$

$a_{\mathrm{n}}=a_{1}+(n-1) d$
$a_{15}=53+(15-1) \times 7$
$=53+14 \times 7$
$=53+98$
= 151
$\therefore 151$ people will be living on $15^{\text {th }}$ floor.

11. Lines and Angles

Excise 11

1. (i) 360°
(ii) One
(iii) 360°
(iv) 7-sided
(v) equal
2. (i) False

Sum of interior angles of a triangle is 180°.
(ii) True (Triangle property)
(iii) True
(iv) True
(v) False

Use the formula from given hints.

Each interior angle of an octagon is 135°
3.

$$
\begin{aligned}
& \text { Sum of the angles of a triangle is } 180^{\circ} . \\
& \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \\
& \text { (i) } 45^{\circ}+58^{\circ}+x^{\circ}=180^{\circ} \\
& 103^{\circ}+x^{\circ}=180^{\circ} \\
& x^{\circ}=180^{\circ}-103^{\circ} \\
& \therefore x^{\circ}=77^{\circ}
\end{aligned}
$$

(ii) $98^{\circ}+30^{\circ}+x^{\circ}=180^{\circ}$

$$
\begin{aligned}
128^{\circ}+x^{\circ} & =180^{\circ} \\
x^{\circ} & =180^{\circ}-128^{\circ} \\
\therefore x^{\circ} & =52^{\circ}
\end{aligned}
$$

(iii) $90^{\circ}+60^{\circ}+x^{\circ}=180^{\circ}$

$$
\begin{aligned}
x^{\circ}+150^{\circ} & =180^{\circ} \\
x^{\circ} & =180^{\circ}-150^{\circ} \\
\therefore x^{\circ} & =30^{\circ}
\end{aligned}
$$

4.

Helpful Hint:

An exterior angle of a triangle is equal to the sum of two opposite interior angles.
(i) In the given triangle, we will first find the angle x° the triangle.

$$
\text { So, } \begin{aligned}
x^{\circ}+45^{\circ}+55^{\circ} & =180^{\circ} \\
x^{\circ}+100 & =180^{\circ} \\
x^{\circ} & =180^{\circ}-100^{\circ} \\
\therefore x^{\circ} & =80^{\circ}
\end{aligned}
$$

Now, $\angle C A D$ is an exterior, therefore

$$
\begin{aligned}
y^{\circ} & =45^{\circ}+55^{\circ} \\
\therefore y^{\circ} & =100^{\circ}
\end{aligned}
$$

Hence, $x^{\circ}=80^{\circ}$ and $y^{\circ}=100^{\circ}$
(ii) $x^{\circ}=40^{\circ}+35^{\circ}$

$$
=75^{\circ}
$$

\therefore Exterior angle $x^{\circ}=75^{\circ}$
(iii) $\ln \triangle A B C$,

$$
\begin{aligned}
\angle B A C & =180^{\circ}-100^{\circ} \\
& =80^{\circ} \text { (supplementary angles on } \\
& \text { a line) } .
\end{aligned}
$$

Now, using the property of a triangle,
Exterior angle = Sum of two opposite interior angles
$100^{\circ}=x^{\circ}+45^{\circ}$
$x^{\circ}=100^{\circ}-45^{\circ}$
$\therefore x^{\circ}=55^{\circ}$
(iv) Using the property of the triangle, we write,

$$
\begin{aligned}
& x^{\circ}=70^{\circ}+50^{\circ} \\
& \therefore x^{\circ}=120^{\circ}
\end{aligned}
$$

(v) Using the property of the triangle,

$$
\begin{aligned}
4 y^{\circ}+\left(7 y^{\circ}+6\right) & =116^{\circ} \\
4 y^{\circ}+7 y^{\circ}+6 & =116 \\
11 y^{\circ} & =116-6 \\
11 y^{\circ} & =110 \\
y^{\circ} & =10 \\
\therefore y & =10^{\circ}
\end{aligned}
$$

5. The sum of interior angles of a pentagon is 540°

$$
\begin{gathered}
\therefore x^{\circ}+150^{\circ}+95^{\circ}+2 x^{\circ}+145^{\circ}=540^{\circ} \\
3 x^{\circ}+390^{\circ}=540^{\circ} \\
3 x^{\circ}=540-390^{\circ} \\
3 x^{\circ}=150^{\circ} \\
x^{\circ}=150^{\circ} \div 3 \\
\therefore x^{\circ}=50^{\circ}
\end{gathered}
$$

6. (i) Heptagon has 7 sides, so $n=7$
\therefore Sum of interior angles of a heptagon

$$
\begin{aligned}
& =(n-2) \times 180^{\circ} \\
& =(7-2) \times 180^{\circ} \\
& =5 \times 180^{\circ} \\
& =900^{\circ}
\end{aligned}
$$

(ii) Sum of interior angles of a 15 -sided polygon

$$
\begin{aligned}
& =(15-2) \times 180^{\circ} \\
& =13 \times 180^{\circ} \\
& =2340^{\circ}
\end{aligned}
$$

(iii) Sum of interior angles of a 20 -sided polygon

$$
\begin{aligned}
& =(20-2) \times 180^{\circ} \\
& =18 \times 180^{\circ} \\
& =3240^{\circ}
\end{aligned}
$$

7. (i) A decagon has 10 sides.

Each interior angle of a decagon

$$
=\frac{(10-2) \times 180^{\circ}}{3}
$$

$$
\begin{aligned}
& =\frac{8 \times 180^{\circ}}{10} \\
& =144^{\circ}
\end{aligned}
$$

(ii) Each interior angle of 18 -sided polygon

$$
\begin{aligned}
& =\frac{(18-2) \times 180^{\circ}}{3} \\
& =\frac{16 \times 180^{\circ}}{18} \\
& =16 \times 10 \\
& =160^{\circ}
\end{aligned}
$$

(iii) Each interior angle of 16 -sided polygon

$$
\begin{aligned}
& =\frac{(16-2) \times 180^{\circ}}{16} \\
& =\frac{14 \times 180^{\circ}}{16_{8}}
\end{aligned}
$$

$$
=\frac{7 \times 180^{45}}{8_{2}}
$$

$$
=\frac{315}{2}
$$

$$
=157.5^{\circ}
$$

8. Each exterior angle of a polygon $=360^{\circ} \div n$
(i) A nonagon has 9-sides,
therefore,
each exterior angle $=360 \div 9$

$$
=40^{\circ}
$$

(ii) Each exterior angle of a 12-sided polygon

$$
\begin{aligned}
& =360 \div 12 \\
& =30^{\circ}
\end{aligned}
$$

(iii) Each exterior angle of a 45-sided polygon

$$
\begin{aligned}
& =360 \div 45 \\
& =8^{\circ}
\end{aligned}
$$

Multiple Choice Questions 11

1. Option C is correct, since an exterior angle of a triangle is equal to the sum of two opposite interior angles.
2. Option D is correct, because the number of sides of the given polygon is 6 .
3. Option C is correct.

The given shape is 6 -sided, so sum of interior angles will be $(n-2) \times 180^{\circ}$
4. Option C is correct
5. Option B is correct

Practical Geometry

Exercise 12A

1. (i) 70°
(ii) hypotenuse
(iii) scalene
(iv) obtuse
(v) scalene
2. (i) True: Properties of triangle
(ii) True: Properties of triangle
(iii) True because the two opposite sides of an isosceles triangle are equal.
(iv) False: It can be right-angled, obtuse-angled, or acute-angled triangle.
(v) False, One angle in a right-angled triangle is 90°. The other two angles should sum to 90°.
3.

Helpful Hint:

(i), (ii) and (iii) follow the same steps of construction.
(i) $m \overline{\mathrm{AB}}=8 \mathrm{~cm}, m \overline{\mathrm{BC}}=6 \mathrm{~cm}, \overline{\mathrm{CA}}=4$ cm

Steps of construction:

Step 1: Draw $m \overline{\mathrm{AB}}=8 \mathrm{~cm}$.
Step 2: With B as centre draw an arc with radius 6 cm .

Step 3: With A as centre, draw an arc with
radius 4 cm .
Step 4: Join C to A and B
$\triangle A B C$ is the required triangle.
(ii) $m \overline{\mathrm{AB}}=10 \mathrm{~cm}, m \overline{\mathrm{BC}}=5 \mathrm{~cm}, \mathrm{~m} \overline{\mathrm{CA}}=8 \mathrm{~cm}$.

(iii) $m \overline{\mathrm{AB}}=9 \mathrm{~cm}, m \overline{\mathrm{BC}}=6 \mathrm{~cm}, m \overline{\mathrm{CA}}=12 \mathrm{~cm}$

Helpful Hint:
(iv), (v) and (vi) follow the same steps of construction.
(iv) $m \overline{\mathrm{AB}}=6 \mathrm{~cm}, m \overline{\mathrm{BC}}=9 \mathrm{~cm}, m \angle \mathrm{~B}=60^{\circ}$

Steps of construction:

Steps 1: Draw $m \overline{\mathrm{AB}}=6 \mathrm{~cm}$
Steps 2: At point B, draw $m \angle A B C=60^{\circ}$
Step 3: With B as center, draw an arc of radius 9 cm to cut $\overline{B Y}$ at C.

Step 4: Join A to C.
$\triangle A B C$ is the required triangle.
(v) $m \overline{\mathrm{AB}}=12 \mathrm{~cm}, m \overline{\mathrm{BC}}=8 \mathrm{~cm}$ $m \angle B=30^{\circ}$

(vi) $m \overline{\mathrm{AB}}=8 \mathrm{~cm}, m \overline{\mathrm{BC}}=10 \mathrm{~cm}$, $m \angle B=90^{\circ}$

Helpful Hint:-

(vii) and (viii) follow the same steps of construction.
(vii) $m \overline{\mathrm{AB}}=6 \mathrm{~cm}, m \angle \mathrm{~A}=60^{\circ}, m \angle \mathrm{~B}=45^{\circ}$

Steps of construction:

Step 1: Draw $m \overline{\mathrm{AB}}=6 \mathrm{~cm}$ BAY
Step 2: At point A, draw $m \angle B A Y=60^{\circ}$
Step 3: At point B, draw $m \angle A B X=45^{\circ}$
Step 4: Mark point C at the intersection of $\overline{\mathrm{AY}}$ and $\overline{\mathrm{BX}}$.
$\triangle A B C$ is the required triangle.
(viii) $m \overline{\mathrm{AB}}=8 \mathrm{~cm}, m \angle \mathrm{~A}=90^{\circ}, m \angle \mathrm{~B}=60^{\circ}$

(ix) $m \overline{\mathrm{BC}}=5.5 \mathrm{~cm}, m \angle \mathrm{~A}=30^{\circ}, m \angle \mathrm{~B}=$ 90°

Steps of construction:

Step 1: Draw $\overline{B C}=5.5 \mathrm{~cm}$
Step 2: Construct an angle of 90° at B.
Step 3: Since sum of the angles in a triangle is 180°, i.e $\angle B+\angle A+\angle C=180^{\circ}$, Make angle of 60° at C meeting $B L$ at A.
Step 4: Measure $\angle \mathrm{A}$. It will be 30°.
$\triangle A B C$ is the required triangle.
4. Construct the following equilateral triangles:
(i) $m \overline{\mathrm{AB}}=12 \mathrm{~cm}$

Steps of construction:

Step 1: Draw $m \overline{\mathrm{AB}}=12 \mathrm{~cm}$
Step 2: With A as centre, draw an arc with
radius 12 cm .
Step 3: With B as centre, draw another arc with radius 12 cm . So that it intersects the previous arc at C.

Step 4: Join C to A and B.
$\triangle A B C$ is the required triangle.
(ii) $m \overline{\mathrm{AB}}=8 \mathrm{~cm}$

Steps of construction:

Follow the same steps as given in Q4 (i)
(iii) altitude $C D=10 \mathrm{~cm}$

Steps of construction:

Step 1: Draw $m \overline{P Q}=10 \mathrm{~cm}$
Step 2: Mark a point D at the centre $\overline{A B}$.
Step 3: Draw a perpendicular $\overline{\mathrm{DE}}$ on $\overline{\mathrm{AB}}$.
Step 4: With D as centre, draw an arc with radius 10 cm intersecting the perpendicular at C .
Step 5 At C draw two angles of 30° on either side of CD. $m \angle B C D$ and
$m \angle \mathrm{ACD}=30^{\circ}$
Step 6: Mark point A and B, where the arms of the angles interest PQ .
$\triangle A B C$ is the required equilateral triangle.
(iv) altitude $\overline{C D}=15 \mathrm{~cm}$

Steps of construction:

Follow the same steps as given in Q4 (iii).
5. Construct the following isosceles triangles.

Steps of construction:

Step 1: Draw $m A B=8 \mathrm{~cm}$
Step 2: Construct $m \angle B A C=65^{\circ}$
Step 3: Construct $m \angle A B C=65^{\circ}$
Step 4: Extend the arms of the angles, so that they meet each other at point C.
$\triangle A B C$ is the required triangle.
Follow the steps of construction given in Q5 (i), for (ii), (iii), (iv).
(ii) $m \overline{\mathrm{AB}}=5 \mathrm{~cm}, m \angle \mathrm{~A}=40^{\circ}$

(iii) $m \overline{\mathrm{AB}}=7 \mathrm{~cm}, m \angle \mathrm{~A}=70^{\circ}$

(iv) $m \overline{\mathrm{AB}}=11 \mathrm{~cm}, m \angle \mathrm{~A}=70^{\circ}$

(v) altitude $=8 \mathrm{~cm}$ vertical angle $=50^{\circ}$

Steps of construction:

Steps 1: Draw $\overline{\mathrm{AB}}$ of any length and mark a point D on it.
Step 2: Draw $\overline{\mathrm{CD}}$ perpendicular to $\overline{\mathrm{AB}}$.
Step 3: With D as centre draw an arc of radius 8 cm , intersecting CD at E .
Step 4: construct $m \angle D E F=25^{\circ}$
$m \angle \mathrm{DEG}=25^{\circ}$
$\Delta E F G$ is the required isosceles triangle.
(vi) altitude $=6 \mathrm{~cm}$, vertical angle $=40^{\circ}$

Follow the same steps of construction as given in Q5 (v), for (vi), (vii), and (viii).

(vii) altitude $=9.5 \mathrm{~cm}$, vertical angle $=35^{\circ}$

(viii) altitude $=4 \mathrm{~cm}$, vertical angle $=65^{\circ}$

(ix) altitude $=5 \mathrm{~cm}$, base angle $=45^{\circ}$

Helpful Hint:

- \angle FEG is vertical angle
- Sum of the angles of a triangle is 180°, therefore $\angle \mathrm{FEG}=90^{\circ}$

Steps of construction:

Step 1: Draw $\overline{A B}$ of any length and mark a point D on it.
Step 2: Draw $\overline{C D}$ perpendicular to $\overline{\mathrm{AB}}$.
Step 3: With D is as centre, draw an arc of radius 5 cm , intersecting $\overline{\mathrm{CD}}$ at E .
Step 4: Construct $\angle D E F=45^{\circ}$ and $\angle D E G=45^{\circ}$ $\triangle E F G$ is the required triangle.
(x) altitude $=7 \mathrm{~cm}$, base angle $=55^{\circ}$

Follow the same steps of construction given in Q5 (ix).
6.

Follow the same steps of construction as given in Q 3 (vii). The given triangle is an acute - angled triangle.
7.

Follow the same steps of construction as given in Q3 (i). The given triangle is an isosceles triangle because two side are equal.
8.

Follow the same steps of construction as given in Q3 (vii). The given triangle is an Obtuse angle - angled triangle.
9.

Steps of construction:

Step 1: Draw $\overline{A C}=4.5 \mathrm{~cm} \longrightarrow$
Step 2: With centre C and radius 3.8 cm draw an arc above AC.
Step 3: with centre A, draw another arc with the same radius, intersecting the previous arc with at point B.

Step 4: Join A and B. Join B and C. $\triangle A B C$ is the required triangle.
Since, $\triangle A B C$ is an isosceles triangle, its base angle are equal.

$$
\therefore \quad \angle \mathrm{BAC}=\angle \mathrm{ACB}
$$

10.

Steps of construction:

Step 1: Draw $\overline{B C}=4 \mathrm{~cm}$
Step 2: At point B, draw $m \angle A B C=30^{\circ}$
Step 3: With B as centre, draw an arc with radius 3 cm to cut $B X$ at A.

Step 4: Join A to C.
$\Delta A B C$ is the required triangle.
11. Follow the steps of construction as in Q4(i) taking each side $=5 \mathrm{~cm}$
$\triangle A B C$ is an equilateral triangle.
Now, Take D as the centre of $\overline{B C}$.

Join A and D.
Measure \angle ADB.
$m \angle \mathrm{ADB}=90^{\circ}$
12.

Steps of construction:

Step 1: Draw $\overline{A B}=5.4 \mathrm{~cm}$
Step 2: Make an angle of 45° at point B.

Step 3: Using a compass cut $\overline{B C}=4.6 \mathrm{~cm}$.
Step 4: Join A and C.
$\triangle A B C$ is the required triangle.
Step 5: Using a pair of compasses draw the angle bisectors at $\angle A, \angle B$, and $\angle C$.
Step 6: Join A and D, B and F, C and E. Angle bisectors $\overline{\mathrm{AD}}, \overline{\mathrm{BF}}$, and $\overline{\mathrm{CE}}$ pass through the same point O.
13.

Steps of construction:

Step 1: Draw $\overline{B C}=6 \mathrm{~cm}$.
Step 2: With B as centre and radius 4.5 cm draw an arc above $\overline{B C}$.

Step 3: With C as centre and radius 4.5 cm draw another arc, intersecting the previous arc at point A.
Step 4: Join A to B and A to C.
$\triangle A B C$ is the required triangle.
Step 5: Mark a point D in the centre of $\overline{B C}$.
Step 6: Join A and D. Measure $\angle A D B$.

$$
\angle A D B=90^{\circ}
$$

14.

Step of construction:

Step 1: Draw $\overline{\mathrm{AB}}=4 \mathrm{~cm}$.
Step 2: Draw $\angle A B L=60^{\circ}$ at point B.
Step 3: With centre B and radius 4 cm draw an aare on $B L$ at C.
$\angle A B C=60^{\circ}$
Step 4: Join A to C.
$\triangle A B C$ is the required triangle.

Exercise 12B

1. (i) diagonal
(ii) 360°
(iii) kite
(iv) equal
(v) equal
2. (i) False

In a trapezoid only one pair of opposite sides are parallel.
(ii) True: Property of a parallelogram
(iii) True: It has four sides.
(iv) True: Parallelograms are four sided figures.
(v) False: In a rectangle, length has a different measurement than breadth, and only opposite sides are equal.
3. (i) Rhombus; all the sides are equal, and opposite angles are equal.
(ii) Trapezium; has a set of two parallel sides, but other two sides are not parallel.
(iii) Kite; the two pairs of adjacent sides are equal but opposite sids are not parallel.
4. (i) True: a parallelogram may have all angles equal i.e. to 90°
(ii) False: a rectangle must have all the angles equal.
(iii) True;: all parallelograms may have all the sides, as well as all angles equal.
(iv) True: all quadrilaterals having four equal sides are rhombuses.
(v) False: a square must have all the angles equal to 90°.
(vi) False: a rhombus must have all the sides equal.
(vii) False: in a kite opposite sides are generally not parallel.
5. (i) In a parallelogram, opposite angels are equal.

In a parallelogram, adjacent angles sum up to 180°.
In the given figure,

$$
\left.\begin{array}{l}
m \angle \mathrm{~B} \quad=110^{\circ} \\
m \angle \mathrm{D} \quad=m \angle \mathrm{~B}=110^{\circ} \text { (opposite angles) } \\
\therefore \quad m \angle \mathrm{D}=110^{\circ} \\
\text { and } m \angle \mathrm{~A}+m \angle \mathrm{D}=180^{\circ} \text { (adjacent } \\
\text { angles) }
\end{array}\right)=180^{\circ} \quad \begin{aligned}
& \\
& m \angle \mathrm{~A}+110^{\circ}=10^{\circ} \\
& m \angle \mathrm{~A}=m \angle \mathrm{~A}=70^{\circ} \\
& m \angle \mathrm{C}=70^{\circ} \\
& m \angle \mathrm{C}=70^{\circ} \\
& \text { Hence } m \angle \mathrm{~A}=70 \\
& m \angle \mathrm{C}=110^{\circ} \\
& m \angle \mathrm{D}
\end{aligned}
$$

(ii)

Opposite angles in a parallelogram are equal.

$$
\therefore \quad \angle B C D=\angle B A D=60^{\circ}
$$

Adjacent angles sum up to 180°
$\angle B C D+\angle C D A=180^{\circ}$
$60^{\circ}+\angle \mathrm{CDA}=180^{\circ}$
$\angle C D A$
$=120^{\circ}$
\angle CDA
$=\angle A B C=120^{\circ}$
(iii)

In the given figure $A B C D, \triangle C O B$ is an isosceles triangle
$\therefore \overline{O C}=\overline{O B}$
and $\angle \mathrm{OCB}=\angle \mathrm{OBC}$
$\angle C O B=90^{\circ}$ (diagonal of a square cut each other at 90°).
According to triangle property
$\angle \mathrm{OCB}+\angle \mathrm{OBC}+\angle \mathrm{COB}=180^{\circ}$
$x+x+90^{\circ}=180^{\circ}$
$2 x=90^{\circ}$
$x=45^{\circ}$
Similarly, taking \triangle AOD, we can prove that $\angle y=45^{\circ}$
(iv)

$A B C D$ is a rectangle (given)
$\angle B A D=x+65^{\circ}=90^{\circ}$ (all the four angles in a rectangle are 90°)
$x+65^{\circ}=90^{\circ}$
$x=90^{\circ}-65^{\circ}=25^{\circ}$
Now $\overline{\mathrm{AD}} \| \overline{\mathrm{BC}}$
$\overline{\mathrm{AC}}$ is the transversal.
$\angle \mathrm{DAC}=\angle \mathrm{ACB}=65^{\circ}$ (alternate $\angle \mathrm{s}$)
$y=90^{\circ}-65^{\circ}$
$=25^{\circ}$
(v)

$\triangle A B D$ is on isosceles triangle
$\angle \mathrm{ABD}=x$
Now $\angle \mathrm{ABD}+\angle \mathrm{BDA}+\angle \mathrm{BAD}=180^{\circ}$
$x+x+110^{\circ}=180^{\circ}$
$2 x=180^{\circ}-110^{\circ}=70^{\circ}$
$x=35^{\circ}$
Similarly $\triangle B C D$ is an isosceles triangle
$\angle B D C=65^{\circ}$ (lease angle)
$\therefore 65^{\circ}+\angle \mathrm{BDC}+y=180^{\circ}$
$65^{\circ}+65^{\circ}+y=180^{\circ}$
$130^{\circ}+y=180^{\circ}$
$y=180^{\circ}-130^{\circ}$
$y=50^{\circ}$
(vi)

$\overline{\mathrm{AD}} \| \overline{\mathrm{BC}}$
$\angle B A D=180^{\circ} 48^{\circ}$ (interior angles in II lines)
$=132^{\circ}$
$y=132^{\circ}$
$\angle B C D=180^{\circ}-125^{\circ}$ (interior angles in Il lines)
$\therefore x=55^{\circ}$
12.

The order of rotational symmetry of a shape can be defined as the number of times it I appears the same during a 360° rotation.

- An equilateral triangle has a rotational symmetry of order 3 .
- An arrow has a rotational symmetry of order 1.
- A trapezium has a rotational symmetry of order 1.
- A rectangle has a rotational symmetry of order 2.
- A hexagon has a rotational symmetry of order 6.

13. Translate each shape using the translation give.
(i) move over 4 units down and 3 units right

(ii) move over 4 units down and 6 units left

Multiple Choice Questions 12

1. Option B is correct.

Reason:
Length of all the sides of an equilateral triangle is equal.
2. Option A is correct.

Reason:

In a right-angled triangle, one angle is always 90°.
3. Option B is correct.

Reason:

In a scalene triangle all the sides have different measurement of length.
4. Option A is correct.

Reason:
In an equilateral triangle the length of all the sides are equal. Therefore, the other two sides will have same length as the length of the base.
5. Option C is correct.

Shapes in other option do not have 4 sides.
6. Option D is correct.

A parallelogram has two pairs of II lines, while trapezoid has only one pair of II lines.
7. Option D is correct.

Rhombus is a quadrilateral. The sum of the angles of a quadrilateral is 360°.
8. Option A is correct.
9. Option B is correct.
10. Option A is correct.

Opposite angles of a parallelogram are equal.
11. Option D is correct because the given figure coincides four times on its original shape.
12. Option B is correct because translation involve only the movement of the shape from one place to other place.

Exercise 13A

1. (i) diameter
(ii) circumference
(iii) segment
(iv) interior
(v) chord
2. (i) True

The centre of a circle is a fixed point which is equidistant from all points on the circle.
(ii) False

A diameter of a circle is a line segment passing through the centre of the circle and its end points lie on the circle. There can be many lines passing through the centre and its end points touching the boundary of the circle.
(iii) False

A radius is a straight line from the centre to the circumference of a circle, while the chord is straight line whose end points lie on the circle.
(iv) True
diameter $=2 \times$ radius
(v) True

Since the arc subtends an angle of 210° which is greater than 180°, it is called major arc.
3.

Steps of construction:

Step 1: Using a compass, draw a circle of radius 2.8 cm .
Step 2: O is the centre of the circle.
Step 3: Take points S and T on the boundary of the circle. Join S and T. ST is a chord.

Step 4: Take points Q and R on the boundary of the circle. Join Q and $R \overline{Q R}$ is another chord.
$\therefore \quad \overline{\mathrm{ST}}$ and $\overline{\mathrm{QR}}$ are two chords not passing through the centre.
4.

Diameter of the circle $=4.2 \mathrm{~cm}$
Radius of the circle $=\frac{4.2}{2} \mathrm{~cm}$
$=2.1 \mathrm{~cm}$

$$
=2.1 \mathrm{~cm}
$$

Steps of construction:

Step 1: Draw a circle of radius 2.1 cm with the help of a compass.

Step 2: O is the centre of the circle. Take a point P on the circle. Measure OP. $m \overline{\mathrm{OP}}=2.1 \mathrm{~cm}$ (radius of the circle).

Step 3: Take a point Q inside the circle.
Step 4: Measure OQ.
$m \overline{\mathrm{OQ}}=1.8 \mathrm{~cm}$
Hence, $m \overline{\mathrm{OP}}>m \overline{\mathrm{OQ}}$.
5.

Steps of construction:

Step 1: Draw a circle of radius 3 cm with centre 0 .

Step 2: Take a point A on the Circle and join O and A.
Step 3: Draw an angle of 60° on $\overline{\mathrm{OA}}$ at point O such that $m \angle A O B=60^{\circ}$.

Step 4: Join A to B.
Step 5: Measure $\overline{O A}, \overline{O B}$, and $\overline{A B}$.
$m \overline{\mathrm{OA}}=m \mathrm{OB}=m \mathrm{AB}=3 \mathrm{~cm}$.
Since, $m \overline{\mathrm{OA}}, m \overline{\mathrm{OB}}$, and $m \overline{\mathrm{AB}}$ are equal, $\triangle A O B$ is an equilateral triangle.
6.

Steps of construction:

Step 1: Draw a circle of diameter 8 cm or radius 4 cm .
Step 2: Draw the diameter $\overline{\mathrm{AB}}$ of the circle.
Step 3: Take another point P on the circle
Step 4: Join A to P and B to P.
Step 5: Measure $\angle A P B m$
7.

Steps of construction:

Step 1: Draw a circle with radius 3.5 cm .
Step 2: Draw the chord $\overline{\mathrm{PQ}}$ of length 2.5 cm touching the circle at P and Q.
Step 3: Shade the minor segment $P Q$. PQ is the required segment.
8. Points A, C, G, and D are interior points.

Points F and B are exterior points.
Points E and H are on the circle.
9. (i) $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \overline{\mathrm{AC}}$ are three chords
(ii) $\overline{\mathrm{AC}}$ is the diameter
(iii) $\triangle \mathrm{AOB}$ and $\triangle \mathrm{BOC}$ are two triangles
(iv) $\overline{\mathrm{OA}}, \overline{\mathrm{OB}}$, and $\overline{\mathrm{OC}}$ are equal line segments.
10.
(i) Draw a circle of suitable radius. With the same radius, mark six point on the circumference, and draw arcs leaving one point.
(ii) Draw a circle and mark six points on the circumference. Join alternate points with overlapping triangles.
(iii) Draw a circle. Taking the radius of the circle as diameters of small circles draw four circle overlapping each other inside the bigger circle.
(iv) Draw a circle of suitable radius. With the same radius draw two half circles facing up and down, taking centre on the circumference. Draw two small half circles taking diameter equal to the radius of bagger circle, on both sides.

Exercise 13B

1. Given:

In a circle with centre $\mathrm{O}, \overline{\mathrm{PQ}}$ is a chord and R is the mid-point of $P Q$.
$\overline{\mathrm{PR}}=\overline{\mathrm{RQ}}, \overline{\mathrm{OR}}$ is perpendicular to $\overline{\mathrm{PO}}$.
$m \angle \mathrm{ROP}=42^{\circ}$
In Δ OPR
$m \angle \mathrm{ORP}+m \angle \mathrm{POR}+m \angle \mathrm{OPR}=180^{\circ}$

Helpful Hint:

sum of the angles of a triangle $=180^{\circ}$.
$90^{\circ}+42^{\circ}+m \angle$ OPR $=180^{\circ}$
$132^{\circ}+m \angle \mathrm{OPR}=180^{\circ}$
$m \angle O P R=180^{\circ}-132^{\circ}=48^{\circ}$
2. Given:
$\overline{\mathrm{AB}}$ is a chord of the circle with centre O .

$$
\begin{aligned}
& \overline{\mathrm{OC}} \stackrel{\perp \overline{\mathrm{AB}}}{m \overline{\mathrm{AC}}=4 \mathrm{~cm}}
\end{aligned}
$$

We know that a perpendicular, from the centre f a circle to a chord, bisects the chord (Property 2)

$$
\begin{aligned}
\therefore m \overline{\mathrm{AC}} & =m \overline{\mathrm{CB}}=4 \mathrm{~cm} \\
m \overline{\mathrm{AB}} & =m \overline{\mathrm{AC}}+m \overline{\mathrm{CB}} \\
& =4+4 \\
& =8 \mathrm{~cm}
\end{aligned}
$$

3. Given:
$\overline{A B}$ is a chord of the circle with centre O.
$\overline{\mathrm{OE}} \perp \overline{\mathrm{AB}}$
$m \overline{\mathrm{AB}}=8 \mathrm{~cm}$
$m \overline{\mathrm{CE}}=2.5 \mathrm{~cm}$
Now,
$m \overline{\mathrm{CE}}=m \overline{\mathrm{ED}}=2.5 \mathrm{~cm}$ (Property 2 of the circle from page 181)
$m \overline{\mathrm{CD}}=5 \mathrm{~cm}$
Now, $m \overline{\mathrm{AE}}=m \overline{\mathrm{~EB}}$ (property 2 of the circle)

$$
\begin{aligned}
& =4 \mathrm{~cm} \\
& =m \overline{\mathrm{AE}}-m \overline{\mathrm{CE}} \\
& =4 \mathrm{~cm}-2.5 \mathrm{~cm}=1.5 \mathrm{~cm}
\end{aligned}
$$

Similarly,

$$
m \overline{\mathrm{BD}} \quad=1.5 \mathrm{~cm}
$$

Therefore,
$m \overline{\mathrm{AC}} \quad=1.5 \mathrm{~cm}, m \overline{\mathrm{DB}}=1.5 \mathrm{~cm}$, and m $\overline{C D}=5 \mathrm{~cm}$.
4. Given:

In the given circle with centre $O, \overline{A B}$ and $\overline{C D}$ are chords to the circle.
$\overline{\mathrm{OM}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{ON}} \perp \overline{\mathrm{CD}}$
$m \overline{\mathrm{OM}}=m \overline{\mathrm{ON}}=3 \mathrm{~cm}$
$m \overline{\mathrm{AM}}=3.2 \mathrm{~cm}$
Now, $m \overline{\mathrm{AM}}=m \overline{\mathrm{BM}}=3.2 \mathrm{~cm}$
$(\therefore \mathrm{OM} \mathrm{AB}$, it bisects $\overline{\mathrm{AB}}$)
$\mathrm{m} \overline{\mathrm{AB}}=m \overline{\mathrm{AM}}+m \overline{\mathrm{MB}}$

$$
=3.2 \mathrm{~cm}+3.2 \mathrm{~cm}=6.4 \mathrm{~cm}
$$

It is given that $m \overline{\mathrm{OM}}=m \overline{\mathrm{ON}}$
$\therefore \quad \mathrm{AB}$ and CD are equidistant from the circle.
Hence in $\overline{\mathrm{AB}}=m \overline{\mathrm{CD}}=6.4 \mathrm{~cm}$

Helpful Hint:

Chords of a circle equidistant from the centre are equal. Converse of Property 1, page 180)
5. Given:
$m \angle \mathrm{AOB}=m \angle \mathrm{BOC}=60^{\circ}$
$m \overline{\mathrm{AB}}=4 \mathrm{~cm}$
Now,
$m \overline{\mathrm{OA}}=m \overline{\mathrm{OB}}=m \overline{\mathrm{OC}}$ (radii of the circle)
Since the angles subtended by $\overline{\mathrm{AB}}$ and $\overline{\mathrm{BC}}$ at the centre are equal, then the chords are equal.
$\therefore \quad m \overline{\mathrm{AB}}=m \overline{\mathrm{BC}}=4 \mathrm{~cm}$
$\Delta A O B$ is an isosceles triangle with vertex angle $=60^{\circ}$
$\therefore \quad \angle \mathrm{OAB}=\angle \mathrm{OBA}$

$$
\begin{aligned}
& 2 \angle \mathrm{OAB}=180^{\circ}-60^{\circ}=120^{\circ} \\
& \angle \mathrm{OAB}=60^{\circ} \\
\therefore & \frac{\Delta \mathrm{OAB} \text { is an equilateral triangle Thus } m}{} \quad \overline{\mathrm{AB}}=m \overline{\mathrm{OA}}=4 \mathrm{~cm} \\
\therefore \quad & m \overline{\mathrm{OC}}=4 \mathrm{~cm} \\
& \angle \mathrm{ABC}=\angle \mathrm{ABO}+\angle \mathrm{OBC}=60^{\circ}+60^{\circ}= \\
& 120^{\circ}
\end{aligned}
$$

Multiple Choice Questions 13

1. Option A is correct

Diameter of a circle is double of its radius.
2. Option B is correct

The diameter of a circle is a line with maximum length, touching the two ends of the circle.
3. Option C is correct.

The chords which are equidistant from the centre are equal.
4. Option D is correct.
5. Option B is correct

Revision 4: Geometry

Helpful Hint:

(sum of the angles of a triangle $=180^{\circ}$)

1. $m \angle x+105^{\circ}=180^{\circ}$ (angles on a straight line)

$m \angle x$	$=180^{\circ}-105^{\circ}$
$m \angle x$	$=75^{\circ}$
$\angle x$	$=75^{\circ}$

Now $\angle x+\angle y+35^{\circ}=180^{\circ}$
$75^{\circ}+\angle y+35^{\circ}=180^{\circ}$
$\angle y+110^{\circ}=180^{\circ}$
$\angle y=180^{\circ}-110^{\circ}$

$$
=70^{\circ}
$$

Hence $x=75^{\circ}, y=70^{\circ}$
2. In the $\triangle B C D$

$\angle \mathrm{B}=54^{\circ}, \angle \mathrm{D}$	$=90^{\circ}$
$\angle \mathrm{BCD}$	$=180^{\circ}-144^{\circ}$
$\angle \mathrm{BCD}$	$=36^{\circ}$

Now, in $\triangle A C D$, let $\angle A C D=x^{\circ}$ then $\angle C A D=3 x$ and $\angle \mathrm{ADC}=90^{\circ}$

Taking sum of the angles of a triangle, we write $x+3 x+90=180$

$$
\begin{array}{rlrl}
4 x \quad=90^{\circ} & \\
x & =\frac{90}{4} & =22.5^{\circ} \\
\therefore \quad \angle \mathrm{ACD} & =22.5^{\circ}
\end{array}
$$

3. (i) The base angles of an isosceles triangle are equal. Suppose the base angles of the given isosceles triangles are x°, then $x^{\circ}+x^{\circ}+76^{\circ}=180^{\circ}$
$2 x^{\circ}=180-76$
$2 x^{\circ}=104^{\circ}$
$x^{\circ}=52^{\circ}$
Hence, the required base angle is 52°.
(ii) One of the angles of a right angled triangle is 90°.
let one of the acute angles be x°
then $x^{\circ}+36^{\circ}=90^{\circ}$

$$
x^{\circ}=90^{\circ}-36^{\circ}
$$

Hence, the size of the other acute angle is 54°
(iii)

Let the side of the third angle $=x^{\circ}$

$$
\begin{aligned}
& x^{\circ}+42^{\circ}+68^{\circ}=180^{\circ} \\
& x^{\circ}+110^{\circ}=180^{\circ} \\
& x^{\circ} \quad=180^{\circ}-110^{\circ} \\
& x^{\circ} \quad=70^{\circ}
\end{aligned}
$$

Hence, the size of the third angle is 70°.
(iv) The ratio of the interior angles of a triangle is 3: 4: 5
Sum of the ratio $=3+4+5=12$
Sum of the angles of a $\Delta=180^{\circ}$
size of largest angle
$=\frac{5}{122} \times 480^{\circ}=75^{\circ}$
4. There are 8 triangles in the given figure.
5. (i) In the $\triangle \mathrm{ACD}$

$$
\begin{aligned}
\angle \mathrm{ACD}+\angle \mathrm{CDA}+\angle \mathrm{CAD} & =180^{\circ} \\
50^{\circ}+90^{\circ}+\angle \mathrm{CAD} & =180^{\circ} \\
\angle \mathrm{CAD} & =180-140 \\
\angle \mathrm{CAD} &
\end{aligned}
$$

(ii) $\ln \triangle \mathrm{ABD}$
$\angle \mathrm{ABD}+\angle \mathrm{DAB}+\angle \mathrm{BDA}=180^{\circ}$
$\angle A B D+48^{\circ}+90^{\circ}=180^{\circ}$
$\angle B D=180^{\circ}-138$
$\angle A B D=42^{\circ}$
(iii) In $\triangle \mathrm{ABC}$,
$\angle B A C=B A D+\angle D A C$
$=48^{\circ}+40^{\circ}\left(-\angle D A C=40^{\circ}\right)$
$\angle B A D=88^{\circ}$
6. (i) $\angle D A B$ and $\angle D C B ; \angle A D C$ and $\angle A B C$
(ii) $\angle D A B$ and $\angle A B C$; $\angle A B C$ and $\angle B C D$; $\angle B C D$ and $\angle C D A ; \angle C D A$ and \angle DAB
(iii) $\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$; $\overline{\mathrm{AD}}$ and $\overline{\mathrm{BC}}$
(iv) $\overline{A B}$ and $\overline{B C}$; $\overline{B C}$ and $\overline{C D}$; $\overline{C D}$ and $\overline{D A} ; \overline{D A}$ and $\overline{B A}$
7. (iii), (iv), and (vi) are correct statements.
8.

Helpful Hint:
Opposite sides of equal angle are equal.

Steps of construction:

Step 1: Draw a line $\overline{B C}$ of suitable length.
Step 2: With the help of protractor, construct an angle of 70° at point B and C.
Step 3; Join B and K. Join c and $L . \overline{B K}$ and $\overline{C L}$ intersect each other at point A.

$$
m \overline{\mathrm{AC}}=m \overline{\mathrm{AB}}
$$

$\triangle A B C$ is an isosceles triangle.
9.

Steps of construction:

Step 1: Draw $\overline{\mathrm{QR}}=4.8 \mathrm{~cm}$.
Step 2: Taking Q as centre and radius 3.2 cm , draw an arc above QR.

Step 3: With the same radius, take R as centre, draw another arc cutting the previous arc at P.

Step 4: Join P and Q. Join P and R Hence $\triangle P Q R$ is the required triangle.

Step 5: Draw the perpendicular bisector of QR, with the help of a compass.
We observe that the perpendicular bisector passes through P.
10.

Steps of construction:

Step 1: Draw a line segment

$$
\overline{\mathrm{AB}}=2.8 \mathrm{~cm}
$$

Step 2: With the help of set square make a perpendicular at point A.
Step 3: Similarly, draw a perpendicular on point B.
Step 4: With the help of compass, taking radius of 2.2 cm mark two arcs at C and D.
Step 5: Join point C to point D.
$\overline{C D}$ is parallel to $\overline{A B}$ and is at a distance of 2.2 cm from it.
11. Draw a $\triangle A B C$, where

$$
\begin{aligned}
& m \angle \mathrm{ABC}=90^{\circ} \\
& m \overline{\mathrm{BC}}=4 \mathrm{~cm} \\
& m \overline{\mathrm{AC}}=3 \mathrm{~cm}
\end{aligned}
$$

Steps of construction:

Take C as centre, draw on arc of 5 cm cutting $\overline{B L}$ at A.

Join points A and C.
$m \overline{\mathrm{AC}} \quad=5 \mathrm{~cm}$
Measure $\overline{\mathrm{AB}}$ with a ruler.

$$
m \overline{\mathrm{AB}} \quad=3 \mathrm{~cm}
$$

Take M as the mid point of $\overline{A C}$.
Measure $\overline{\mathrm{BM}}$ and $\overline{\mathrm{CM}}$.
$m \overline{\mathrm{BM}} \quad=\mathrm{m} \overline{\mathrm{MC}}=2.5 \mathrm{~cm}$
12. Draw $\triangle A C B$, such that
$m \overline{\mathrm{BC}}=3.2 \mathrm{~cm}$,
$m \angle \mathrm{ABC}=30^{\circ}$
$m \angle \mathrm{ACB}=60^{\circ}$
Extend $\overline{\mathrm{AC}}$ to D .
Measure $\angle B A D$ with a protractor.

$$
\angle B A D=90^{\circ}
$$

13. Exterior angle of a triangle is equal to the sum of two opposite interior angle.

$$
\begin{aligned}
\therefore x^{\circ} & =25^{\circ}+40 \\
& =65^{\circ}
\end{aligned}
$$

Now sum of the interior angles of a triangles is 180°

$$
\begin{aligned}
\therefore 35^{\circ}+y^{\circ}+65^{\circ} & =180^{\circ} \\
y^{\circ}+100^{\circ} & =180^{\circ} \\
y^{\circ} & =80^{\circ}
\end{aligned}
$$

14. (i) $\angle(\overline{O D} 1 \overline{\mathrm{AB}}$, not touching the circumference)
(ii) $=$ (both are radii of the circle)
(iii) \angle ($\overline{\mathrm{OD}} \angle$ radius)
(iv) $=$ (both are radii)
(v) $\angle(\overline{O A}$ is radius)
15. In $\triangle \mathrm{PQR}$,
$m \overline{\mathrm{PQ}}=m \overline{\mathrm{PR}}$ (given)
Hence, $m \angle \mathrm{PQR}=\angle \mathrm{PRQ}$ (opposite angles of equal sides)
$m \angle$ QPR $=72^{\circ}$ (given)

Therefore, $m \angle \mathrm{PQR}+m \angle \mathrm{PRQ}+72^{\circ}=180^{\circ}$ (sum of the angles of a triangle)
$m \angle \mathrm{PQR}+m \angle \mathrm{PRQ}=180^{\circ}-72^{\circ}$

$$
=108^{\circ}
$$

$\therefore m \angle \mathrm{PQR}=m \angle \mathrm{PRQ}=54^{\circ}$
(i) $m \angle \mathrm{OQR}=\frac{1}{2}$ of $54^{\circ}=27^{\circ}$
$\therefore \overline{\mathrm{QO}}$ is the besctor of $\angle \mathrm{OQR}$ Similarly
(ii) $m \angle \mathrm{ORQ}=\frac{1}{2}$ of $54^{\circ}=27^{\circ}$
(iii) $m \angle \mathrm{QOR}=180^{\circ}-\left(27^{\circ}+27^{\circ}\right)$

$$
\begin{aligned}
& =180^{\circ}-54^{\circ} \\
& =126^{\circ}
\end{aligned}
$$

Q16 and 17 (Answers not required)
18. (i) The given parallelogram is a rhombus, therefore all the sides are equal.
$\overline{\mathrm{AB}}=\overline{\mathrm{BC}}=\overline{\mathrm{CD}}=\overline{\mathrm{AD}}=2.5 \mathrm{~cm}$
(ii) ABCD is a square, the opposite sides of a square are equal.

$$
\begin{aligned}
& \overline{\mathrm{AB}}=\mathrm{AD}=3 \mathrm{~cm} \\
& \overline{\mathrm{DC}} \| \mathrm{AB} \text { (apposite sides of a } \\
& \text { parallelogram) }
\end{aligned}
$$

$\angle C D B=\angle C B D=45^{\circ}$ (alternate angles)
$\therefore \quad \overline{\mathrm{AD}}=\overline{\mathrm{BC}}=3 \mathrm{~cm}$
Hence $\overline{A D}=\overline{D C}=\overline{C B}=3 \mathrm{~cm}$
Q19 (Answer not required).
20.

$A B C D$ is a trapezium $A B \| C D$
21. (i) Correct (Both are radii if the same chords).
(ii) Not correct ($\angle A C O$ and $\angle A E B$ are not subtended by the same chords).
(iii) Not correct (same reason as above).
(iv) Correct (angles substandard by the same chords).
(v) Correct (equal chord subtend equal angles).
(vi) Not correct ($\overline{\mathrm{AB}}$ is a diameter and $\overline{\mathrm{AE}}$ is a segment).
(vii) Correct ($\overline{C D}$ is radius of the circle and is the longest distance between two points on the circumference).

Perimeter and Area

Exercise 14A

1. (i) Perimeter
(ii) $1600 \mathrm{~mm}^{2}$
(iii) A of trapeziums $=\frac{1}{2}(a+b) h$
(iv) Area of rhombus $=\frac{1}{2} x d, x d$
(v) 22.30
2. (i) True: $A=12 \times 12=144 \mathrm{~m}^{2}$
(ii) False In an isosceles triangle, two side are equal
The three sides of the triangle sum up to 15 m
(iii) False: An equilateral triangle Perimeter $=$ sum of length of all sides $=16+16+16=48 \mathrm{~cm}$
(iv) False: Area of a rhombus = Product of the diagonals $\div 2$.
(v) True:

Area of a triangle $=\frac{\text { base } \times \text { height }}{2}$
3. In 1 hour she travels 40 Km

In 3 hours, she travels 40×3

$$
=120 \mathrm{Km}
$$

\therefore the girl travels 120 km in 3 hours.
4. Distance between the cities $=165 \mathrm{Km}$

Time taken by Yasir to travel $=3 \mathrm{hr}$

$$
\begin{aligned}
\text { Speed } & =\frac{\text { Distance }}{\text { Time }} \\
& =\frac{165}{3} \\
& =55 \mathrm{Km} / \mathrm{hr}
\end{aligned}
$$

\therefore Yasir travels with the speed of $55 \mathrm{Km} / \mathrm{hr}$
5. In 1 second, the whale travels 8 m

In 1 minute, the whale travels $8 \times 60 \mathrm{~m}$

In 2 minutes, the whale travels

$$
8 \times 60 \times 2=960 \mathrm{~m}
$$

\therefore the whale travels 960 m in 2 minutes.
6. 84 km is travelled in 1 hour

1 Km is travelled in $\frac{1}{84} \mathrm{hr}$
672 Km is travelled in $=\frac{1 \times 672}{84} \mathrm{hr}$

$$
=8 \mathrm{hr}
$$

\therefore It takes 8 hours to travel 672 m at $84 \mathrm{Km} / \mathrm{hr}$.
7. Ahmed left home at 4.30 p.m.

He spent 2 hours 25 minutes with his friend.

hr	min
4	30
2	25
6	55

\therefore He came back at 6.55 p.m.
8. The circus show started at 6.15 p.m.

The circus show ended at 9.30 p.m.
To find the time duration, we proceed as
following:

\therefore the duration of the show is 3 hr 15 min

$$
=195 \text { minutes }
$$

9. To find the duration of the school time, we proceed as following:

\therefore the school works for 5 hours +45 min

$$
=5 \mathrm{hr} 45 \mathrm{~min}
$$

10. Marium started her work at 2.15 p.m.
$=14.15$ hours
(Converting into 24-hour time).
She completed her work at 16.35 hours. Time taken by Marium is calculated as following:

\therefore time taken by Marium

$$
\begin{aligned}
& =2 \mathrm{hr}+15 \mathrm{~min}+5 \mathrm{~min} \\
& =2 \mathrm{hr} 20 \mathrm{~min}
\end{aligned}
$$

11. At first, Bazil watched the match for the following: time duration.
\therefore He watched the match for

$$
\begin{aligned}
45 \mathrm{~min}+50 \mathrm{~min} & =95 \mathrm{~min} \\
& =1 \mathrm{hr} 35 \mathrm{~min}
\end{aligned}
$$

Then, he watched the match again for the following time duration.

He watched the match again for 1 hr 15 min.
\therefore The total time for which he watched the match is $1 \mathrm{hr} 35 \mathrm{~min}+1 \mathrm{hr} 15 \mathrm{~min}$
$=2 \mathrm{hr} 25 \mathrm{~min}$
12. Let the breadth of rectangle be $x \mathrm{~cm}$

then, length	$=2 x \mathrm{~cm}$
12	$=2 x$
x	$=6 \mathrm{~cm}$
Perimeter	$=2(l+b)$
	$=2(12+6)$
	$=36 \mathrm{~cm}$

13. Perimeter of rectangular land $=2(l+b)$

$$
\begin{aligned}
& =2(8+5) \\
& =26 m
\end{aligned}
$$

The length of wire needed to fence the field once

$$
=26 \mathrm{~m}
$$

The length of wire for fencing 4 lines

$$
=26 \times 4
$$

$$
=104 \mathrm{~m}
$$

14. The perimeter of rectangular garden

$$
\begin{aligned}
& =2(l+b) \\
& =2(105+75) \\
& =2+180 \\
& =360 \mathrm{~m}
\end{aligned}
$$

Now, 360 m will make 1 round 3600 m will make 10 rounds.
15. (i) Area of the big square $=15 \times 15$

$$
=225 \mathrm{~m}^{2}
$$

Area of the small square $=9 \times 9=81 \mathrm{~m}^{2}$ Area of the shaded part = Area of the big square - Area of the small square

$$
\begin{aligned}
& =225-81 \\
& =144 \text { sq. metres }
\end{aligned}
$$

(ii) Area of shaded parts = Area of larger rectangle + area of triangle.
Rectangle:
Length $=8 m+4 m=12 m$
breadth $=5 \mathrm{~m}$
Area $=5 \times 12=60 \mathrm{~m}^{2}$
Triangle:

$$
\text { Base }=8 m
$$

height $=5 \mathrm{~m}$
Area $=\frac{8 \times 5}{2}=20 \mathrm{~m}^{2}$
Area of shaded part

$$
\begin{aligned}
& =60+20 \\
& =80 \text { sq. metres }
\end{aligned}
$$

(iii) Area of rhombus $=\frac{1}{2} \times d_{1} \times d_{2}$; where d_{1} and d_{2} are the diagonals of the rhombus.
$A=\frac{1}{2} \times 10 \times 12$

$$
=60 \text { sq. metres }
$$

Area of $\frac{1}{4}$ of the rhombus $=60 \div 4$

$$
=15 \text { sq. metres }
$$

16. Area covered by 1 tile $=20$ sq. centimeter

$$
\frac{20}{10000}=0.002 \mathrm{~m}
$$

Area covered by 1050 tiles $=0.002 \times 1050$

$$
\begin{aligned}
& =2.100 \text { sq. metres } \\
& =2.1 \text { sq. metres }
\end{aligned}
$$

17. Area of the floor $=$ length \times breadth

$$
\begin{aligned}
& =12 \times 9 \\
& =108 \text { sq. metres }
\end{aligned}
$$

Cost of tiling 1 sq. metre of the floor $=$ Rs 50 Cost of tiling 108 sq. metres of the floor

$$
\begin{aligned}
& =108 \times 50 \\
& =\text { Rs } 5400
\end{aligned}
$$

18. The area of the rectangular wall $=5 \mathrm{~m} \times 7 \mathrm{~m}$

$$
\begin{aligned}
& =35 \mathrm{~m}^{2} \\
& =2 \mathrm{~m} \times 0 \\
& =1.8 \mathrm{~m}^{2}
\end{aligned}
$$

The area of the door $=2 \mathrm{~m} \times 0.9 \mathrm{~m}$

The remaining area of the wall = Area of the wall - area of the door

$$
\begin{aligned}
& =35 \mathrm{~m}^{2}-1.8 \mathrm{~m}^{2} \\
& =33.2 \mathrm{~m}^{2}
\end{aligned}
$$

\therefore the remaining area of the wall $=33.2 \mathrm{~m}^{2}$
19. The area of the field $=2.5 \times 1.5$

$$
=3.75 \mathrm{Km}
$$

The area of the field used for growing potatoes

$$
\begin{aligned}
& =3.75-1.25 \\
& =2.50 \mathrm{~km}^{2}
\end{aligned}
$$

\therefore the area for growing potatoes $=2.5 \mathrm{Km}^{2}$

Exercise 14B

1. Area of a circle $=\pi r^{2} ; \pi=3.142$

$$
\begin{aligned}
\text { Area } & =3.142 \times(3.5)^{2} \\
& =3.142 \times 12.25 \\
& =38.4895 \mathrm{~cm}^{2}
\end{aligned}
$$

2. Area of the circular garden $=\pi r^{2}$

$$
\begin{aligned}
& =3.142 \times(42)^{2} \\
& =5542.488 \mathrm{~m}^{2}
\end{aligned}
$$

3. Area of the circle $=\pi r^{2}$

Given:
Area $=616 \mathrm{~cm}^{2}$

$$
\begin{aligned}
\pi & =\frac{22}{7} \\
\therefore \quad 616 & =\frac{22}{7} \times r^{2} \\
r^{2} & =\frac{616 \times 7}{22} \\
r^{2} & =196 \\
r & \sqrt{196} \\
& =\sqrt{14 \times 14} \\
& =14 \mathrm{~cm}
\end{aligned}
$$

4. Internal radius of the ring $=3 \mathrm{~cm}$

External radius of the ring $=10 \mathrm{~cm}$
Area of the circle

$$
=\pi r^{2}
$$

Area of the internal circle $=3.142 \times(3)^{2}$

$$
\begin{aligned}
& =3.142 \times 9 \\
& =28.278 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of the external circle $=3.142 \times(10)^{2}$

$$
\begin{aligned}
& =3.142 \times 100 \\
& =314.2 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of the circular ring

$$
=314.200-28.278
$$

$$
=285.922 \mathrm{~cm}^{2}
$$

5. Diameter of first circle

$$
\therefore \text { Radius } \mathrm{r}_{1} \quad=2 \mathrm{~cm}
$$

$=4 \mathrm{~cm}$

Diameter of second circle $=6 \mathrm{~cm}$
Radius r_{2}
$=3 \mathrm{~cm}$
Area $A_{1}=\pi\left(r_{1}\right)^{2}$

$$
\begin{aligned}
& =3.142 \times(2)^{2} \\
& =3.142 \times 4 \\
& =12.568 \mathrm{~cm}^{2}=13 \mathrm{~cm}^{2}
\end{aligned}
$$

(rounding off to whole number)

$$
\begin{aligned}
\text { Area } A_{2} & =\pi\left(r_{2}\right)^{2} \\
& =3.14 \times(3)^{2} \\
& =3.142 \times 9 \\
& =28.278 \mathrm{~cm}^{2}=28 \text { sq. } \mathrm{cm}^{2}
\end{aligned}
$$

(rounding off to nearest whole number)
$A_{1}: A_{2}=13: 28$
6. Radius of the circular park $=12 \mathrm{~m}$
width of the road

$$
=4 \mathrm{~m}
$$

Area of circular park

$$
\begin{aligned}
& =\frac{22 \times 144}{7} \\
& =452.57 \mathrm{~m}^{2}
\end{aligned}
$$

Area of the circular park including 4 m wide road around it

$$
\begin{aligned}
& =\frac{22}{7} \times(12+4)^{2} \\
& =\frac{22}{7} \times(16)^{2} \\
& =\frac{22}{7} \times 16 \times 16 \\
& =804.57 \mathrm{~m}^{2}
\end{aligned}
$$

Area of the circular road $=804.57-452.57$

$$
=352 \mathrm{~m}^{2}
$$

Cost of metalling the road $=352 \times 600$
= Rs 211,200
7. The diameter of the wheel $=44 \mathrm{~cm}$

The radius of the wheel $=44 \div 2$

$$
\begin{aligned}
& =22 \mathrm{~cm} \\
& =0.22 \mathrm{~m}
\end{aligned}
$$

Circumference of the wheel $=2 \times \pi \times r$

$$
\begin{aligned}
& =2 \times 3.142 \times 0.22 \\
& =1.382 \mathrm{~m}
\end{aligned}
$$

In one revolution wheel covers

$$
=\quad 1.382 \mathrm{~m}
$$

In 450 revolution it covers $=1.382 \times 450$

$$
\begin{aligned}
& =621.9 \mathrm{~m} \\
& =622 \mathrm{~m}
\end{aligned}
$$

8. Radius of the bus wheel $=50 \mathrm{~cm}$

$$
\begin{aligned}
& =\frac{50}{100}=0.5 \mathrm{~m} \\
& =\frac{0.5}{1000} \mathrm{~km} \\
& =0.0005 \mathrm{~km}
\end{aligned}
$$

Circumference of the bus wheel $=2 \pi \times r$

$$
\begin{aligned}
& =2 \times 3.142 \times .0005 \\
& =0.00314 \mathrm{~km}
\end{aligned}
$$

Now, 0.00314 km is covered in 1 revolution 3 km is covered in 955 revolutions
9. The area of the rectangular field $=14.5 \times 22$

$$
=319 \text { sq. metres }
$$

The goat can graze in a circular field with
radius 2.5 m .
The area of circular field $=2 \times 3.142 \times(2.5)^{2}$

$$
=39.275 \mathrm{~m}^{2}
$$

The surface of the field on which the goat can not graze

$$
\begin{aligned}
& =319-39.275 \\
& =279.5 \mathrm{~m}^{2}
\end{aligned}
$$

Multiple Choice Questions 14

1. Option A is correct.

Area of a triangle $=\frac{b \times h}{2}$
2. Option C is correct.

Area of a rhombus $=\frac{d_{1} \times d_{2}}{2}$
3. Option B is correct.
length $=30 \mathrm{~cm}$ breadth $=15+5=20 \mathrm{~cm}$
Area of rectangles $=l \times b$
4. Option C is correct.

Perimeter = sum of length of all the sides.
The unit should be cm
5. Option D is correct.

A trapezium cannot be divide into two squares or rectangles, because its two sides are non-parallel.
Area of trapezium $=\frac{d_{1} \times d_{2}}{2}$
6. Option A is correct.

Radium = Diameter/2
7. Option B is correct.
8. Option C is correct.
9. Option C is correct.

First we find the speed partner, then convert the speed in m / s.
10. Option A is correct.

Convert 105 minutes into hours and minute.
By adding both the times we get answer.

Volume and Surface Area

Exercise 15

1. (i) $\left(\frac{1}{2} b h\right) \times l$
(ii) $2 \pi r(h+h)$
(iii) two
(iv) $\pi r^{2} h$
(v) $2 \pi r$
2. (i) true

The circumference defines the length of the boundary of the circle.
(ii) True

A cylinder is formed by stacking circles of negligible thickness, upon each other. By stacking, the circles we get cylinder with height ' h '. A circle has two dimensions and ' h ' is the third dimension. Therefore, the cylinder is a 3D object.
(iii) False

The surface area of a cylinder consists of one rectangle and two circles.
(iv) False

The volume of a cylinder has three dimension.
(v) True
3. $l=2 \mathrm{~m}, \mathrm{~b}=80 \mathrm{~cm}$, and $h=60 \mathrm{~cm}$

Volume of a cuboid $=l \times b \times h$

$$
=200 \times 80 \times 60
$$

$$
\begin{aligned}
& =960000 \mathrm{~cm}^{3} \\
& =960000 \div 1000000 \\
& =0.96 \mathrm{~m}^{3}
\end{aligned}
$$

Surface Area of a cuboid

$$
=2(l b+b h+h l)
$$

$$
\begin{aligned}
& =2(200 \times 80+80 \times 60+60 \times 200) \\
& =2(16000+4800+12000) \\
& =2 \times 32800 \\
& =65,600 \mathrm{~cm}^{2} \\
& =65600 \div 10000 \\
& =6.56 \mathrm{~m}^{2}
\end{aligned}
$$

4. Volume of a cube $=l^{3}$, where l is the length of each side
Volume $=2.6 \times 2.6 \times 2.6$

$$
=17.576 \mathrm{~m}^{3}
$$

Surface Area $=6 l^{2}$

$$
\begin{aligned}
& =6 \times 2.6 \times 2.6 \\
& =40.56 \mathrm{~cm}^{2}
\end{aligned}
$$

5. The edge of the cube $=80 \mathrm{~cm}$

$$
\begin{array}{ll}
\text { Volume } & =80 \times 80 \times 80 \\
& =512000 \mathrm{~cm}^{3} \\
\text { Surface Area } & =6 \times 80 \times 80 \\
& =38400 \mathrm{~cm}^{2}
\end{array}
$$

If edge is decreased by 10%

$$
\text { decrease }=\frac{1}{\frac{10}{100}} \times \stackrel{8}{4 \theta}=8 \mathrm{~cm}
$$

New length of edge $=80-8=72 \mathrm{~cm}$
Decreased volume $=72 \times 72 \times 72$

$$
=373248 \mathrm{~cm}^{3}
$$

Actual decrease in volume $=512000-373248$

$$
=138752 \mathrm{~cm}^{3}
$$

$\%$ decrease in volume $=\frac{138752}{512000} \times 100 \%$
= 27.1\%

Now, decreased surface area $=6 \times 72 \times 72$

$$
=31104 \mathrm{~cm}^{2}
$$

Actual decrease in surface area

$$
\begin{aligned}
& =38400-31104 \\
& =7296 \mathrm{~cm}^{2}
\end{aligned}
$$

\% decrease in surface area

$$
\begin{aligned}
& =\frac{7296}{38400} \times 100 \% \\
& =19 \%
\end{aligned}
$$

Hence, volume is decreased by 27.1% or 138752 cm 3

Surface area is decreased by 19% or $7296 \mathrm{~cm}^{2}$
6. Length of the wall $=30 \mathrm{~m}$

Height of the wall $=2.5 \mathrm{~m}$
Thickness of the wall $=50 \mathrm{~cm}=0.5 \mathrm{~m}$
Volume of the wall $=30 \times 2.5 \times 0.5$

$$
=37.5 \mathrm{~m}^{3}
$$

Length of the brick $=20 \mathrm{~cm}$
Width of the brick $=10 \mathrm{~cm}$
Thickness of the brick $=7.5 \mathrm{~cm}$
Volume of the brick $=20 \times 10 \times 7.5$

$$
=1500 \mathrm{~cm}^{3}=0.0015 \mathrm{~m}^{3}
$$

Number of bricks required to build the wall

$$
\begin{aligned}
& =\frac{37.5}{.0015} \\
& =\frac{25}{27510000} \\
& 15110_{1} \\
& =25000
\end{aligned}
$$

7. The volume of cube $1=3 \times 3 \times 3=27 \mathrm{~cm}^{3}$

The volume of cube $2=4 \times 4 \times 4=64 \mathrm{~cm}^{3}$
The volume of cube $3=5 \times 5 \times 5=125 \mathrm{~cm}^{3}$
Total volume of melted metal

$$
=27+64+125=216 \mathrm{~cm}^{3}
$$

Hence, the volume of new cube $=216 \mathrm{~cm}^{3}$
One edge of the new cube $=\sqrt[3]{216} \mathrm{~cm}^{3}$

$$
\begin{aligned}
& =\sqrt[3]{6 \times 6 \times 6} \\
& =6 \mathrm{~cm}
\end{aligned}
$$

the surface area of new cube $=6 l^{2}$

$$
\begin{aligned}
& =6 \times 6 \times 6 \\
& =216 \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore (i) the volume of the new cube $=216 \mathrm{~cm}^{3}$
(ii) the surface area of the new cube $=216 \mathrm{~cm}^{2}$
8. Volume of a cylinder $=\pi r^{2} h$

Surface Area of a cylinder $=2 \pi r(h+r)$

Radius	$=7 \mathrm{~cm}$
Height	$=30 \mathrm{~cm}$

Volume $=\pi r^{2} h$

$$
\begin{aligned}
& =\frac{22}{7} \times(7)^{2} \times(30) \\
& =\frac{22}{7} \times 7 \times 7 \times 30
\end{aligned}
$$

$4620 \mathrm{~cm}^{3}$
Surface Area $=2 \pi r(h+r)$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times 7(30+7) \\
& =2 \times \frac{22}{7} \times 7 \times 37 \\
& =1628 \mathrm{~cm}^{2}
\end{aligned}
$$

9. Circumference of a circle $=2 \pi r$

$$
\begin{aligned}
44 & =2 \times \frac{22}{7} \times r \\
r & =\frac{244 \times 7}{2 \times 22} \\
& =7 \mathrm{~cm} \\
& =\pi r^{2} h \\
& =\frac{22}{7} \times(7)^{2} \times 10 \\
& =\frac{22}{7} \times 7 \times 7 \times 10 \\
& =1540 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of a cylinder
10. Let the height of the cylinder be $\times \mathrm{cm}$. Radius of the cylinder $=\frac{x}{7} \mathrm{~cm}$
Area of curved surface of a cylinder $=2 \pi r h$ $176=2 \times \frac{22}{7} \times \frac{x}{7} \times x$

$$
\begin{aligned}
x^{2} & =\frac{18^{4 / 2}}{2767 \times 72} \\
x^{2} & =196 \mathrm{~cm}^{2} \\
x & =14 \mathrm{~cm}
\end{aligned}
$$

$\therefore \quad$ Height of the cylinder $=h=14 \mathrm{~cm}$
Radius of the cylinder $=r=\frac{14}{7}=2 \mathrm{~cm}$
Volume of the cylinder $=\pi r^{2} h$

$$
\begin{aligned}
& =\frac{22}{7} \times 2 \times 2 \times 14 \\
& =176 \mathrm{~cm}^{2}
\end{aligned}
$$

11. Diameter of the pillar $=1.4 \mathrm{~m}$

Radius of the pillar $=0.7 \mathrm{~m}$
Height of the pillar $=6 \mathrm{~m}$
Area of curved surface of one pillar $=2 \pi r h$

$$
\begin{aligned}
& =2 \times 3.142 \times 0.7 \times 6 \\
& =26.39 \mathrm{~m}^{2}
\end{aligned}
$$

Area of curved surface of 4 pillar

$$
\begin{aligned}
& =26.39 \times 4 \\
& =105.56 \mathrm{~m}^{2}
\end{aligned}
$$

Cost of painting one square metre $=$ Rs 10
Cost of painting $105.56 \mathrm{~m}^{2}=10 \times 105.56$

$$
\begin{aligned}
& =1055.60 \\
& =\text { Rs } 1056
\end{aligned}
$$

12. Volume of the prism $=(b \times h) \times l$

Where $\frac{1}{2} b h$ is the base area and I is height of prism
Volume of the prism $=87.5 \mathrm{~cm}^{3}$

$$
\begin{aligned}
87.5 & =\frac{1}{2}(x \times 5) \times 10 \\
& =\frac{5 x}{2} \times 50^{5} \\
& =25 x
\end{aligned}
$$

$$
\therefore 25 x=87.5
$$

$$
x=87.5 \div 25
$$

$$
=3.5 \mathrm{~cm}
$$

13.

Helpful Hint:
Surface area of a triangular prism.
$=\left(5_{1}+5_{2}+5_{3}\right)=l+b h$
Where $5_{1}, 5_{2}$, and 5_{3} are the edges of the base triangle, b is the bottom edge of the
base triangle, and I is the length of prism
(i)

$5_{1}=7 \mathrm{~cm}$	$5_{2}=7 \mathrm{~cm}$
$5_{3}=9 \mathrm{~cm}$	$b=9 \mathrm{~cm}$
$h=5 \mathrm{~cm}$	$l=11 \mathrm{~cm}$

Surface are of triangular prism
$=23 \times 11+45$
$=253+45$
$=298 \mathrm{~cm}^{2}$
(ii) $(3+4+5) \times 9+4 \times 3$
$=12 \times 9+12$
$=108+12$
$=120 \mathrm{~cm}^{2}$
(iii) $(6+6+7) \times 13+7 \times 8$

$$
\begin{aligned}
& =19 \times 13+56 \\
& =303 \mathrm{~cm}^{2}
\end{aligned}
$$

14.

Helpful Hint:-
Volume of a triangular prism
$=\left(\frac{1}{2} b \times h\right) \times l$
(i) Volume of triangular prism

$$
\begin{aligned}
& =\left(\frac{1}{2} b \times h\right) \times l \\
& \text { Base area }=\frac{1}{2} b h=40 \mathrm{~cm}^{2} \\
& \text { Volume }=40 \times 8 \\
& =320 \mathrm{~cm}^{2} \\
& \text { (ii) Volume }=\left(\frac{1}{2} b \times h\right) \times l \\
& \text { Base area }=\frac{1}{2} b h=36 \mathrm{~cm}^{2} \\
& \text { Volume }=36 \times 17 \\
& =612 \mathrm{~cm}^{2}
\end{aligned}
$$

15. Base area of a triangular prism $=55 \mathrm{~cm}^{2}$

Volume $=55 \times 20$

$$
=1100 \mathrm{~cm}^{3}
$$

Multiple Choice Questions 15

1. Option C is correct.

Volume of a cuboid $=l \times b \times h$

$$
=6 \times 5 \times 12=360 \mathrm{~cm}^{3}
$$

2. Option C is correct.

Volume of the prism $\left(\frac{1}{2} b \times h\right) \times l$
3. Option A is correct.

Volume of cylinder $=\pi r^{2} h$

$$
\begin{aligned}
& =\frac{22}{7} \times 2 \times 2 \times 12 \\
& =150.85 \mathrm{~cm}^{3}
\end{aligned}
$$

4. Option B is correct.

$$
\begin{aligned}
& 500 \div 1000000 \\
& =.0005 \mathrm{~m}^{3}
\end{aligned}
$$

5. Option B is correct.

Volume of cylinder $=\pi r^{2} h$

$$
4224=\frac{22}{7} \times 8 \times 8 \times h
$$

$528 \quad 66^{3}$
$\frac{4224 \times 7}{22 \times 8 \times 8}=21 \mathrm{~cm}$

Revision 5: Mensuration

1. (i) Area of the bigger rectangle:
$l=30 \mathrm{~m} ; b=24 \mathrm{~m}$
Area $=l \times b$
$=30 \times 24$
$=720 \mathrm{~m}^{2}$
Area of the smaller rectangle:

$$
\begin{aligned}
l & =30-12=18 \mathrm{~m} \\
b & =24-8=16 \mathrm{~m} \\
\text { Area } & =l \times b \\
& =18 \times 16 \\
& =288 \mathrm{~m}^{2}
\end{aligned}
$$

Area of the shaded part
= Area of bigger rectangle - Area of smaller rectangle
$=720-288=432 \mathrm{~m}^{2}$
(ii) Area of the rectangle $=l \times b$

$$
\begin{aligned}
& =12 \times 8 \\
& =96 \mathrm{~m}^{2} \\
& =\frac{1}{2} \times b \times h \\
& =\frac{1}{2} \times 12^{6} \times 8 \\
& =48 \mathrm{~m}^{2}
\end{aligned}
$$

Area of the triangle

Area of shaded part $=$ Area of rectangle Area of triangle

$$
\begin{aligned}
& =96 \mathrm{~m}^{2}-48 \mathrm{~m}^{2} \\
& =48 \mathrm{~m}^{2}
\end{aligned}
$$

(iii) In the given rhombus:
$d_{1}=10 \mathrm{~m} ; \quad d_{2}=16 \mathrm{~m}$

$$
\begin{aligned}
\text { Area of rhombus } & =\frac{1}{2} \times d_{1} \times d_{2} \\
& =\frac{1}{z} \times 10 \times 16 \\
& =80 \mathrm{~m}^{2}
\end{aligned}
$$

Area of unshaded triangle $=\frac{1}{2} \times b \times h$

$$
\begin{aligned}
& \frac{1}{2} \times 10^{10} \times 8 \\
= & 40 \mathrm{~m}^{2}
\end{aligned}
$$

Area of shaded part $=$ Area of rhombus -
Area of unshaded part

$$
\begin{aligned}
& =80 \mathrm{~m}^{2}-40 \mathrm{~m}^{2} \\
& =40 \mathrm{~m}^{2}
\end{aligned}
$$

(iv) We see two triangles in shaded part.

One triangle is with base 12 cm and height 12 cm
Area $=\frac{b \times h}{2}=\frac{12 \times 12}{2}=72 \mathrm{~cm}^{2}$
The other triangle is with base 8 cm and height 12 cm .
Area $=\frac{b \times h}{2}=\frac{8 \times 12}{2}=48 \mathrm{~cm}^{2}$
Total area of shaded part $=72 \mathrm{~cm}^{2}+48 \mathrm{~cm}^{2}$

$$
=120 \mathrm{~cm}^{2}
$$

2. Length of the rectangle $=16 \mathrm{~m}$

Perimeter of the rectangle $=52 \mathrm{~m}$
$\mathrm{P}=2(l+b)$
$52=2(16+b)$
$52=32+2 b$
$2 b=52-32$
$2 b=20$
$b=10 \mathrm{~m}$
\therefore breadth of the rectangle $=10 \mathrm{~m}$
Area of the rectangle $=l \times b$

$$
\begin{aligned}
& =16 \times 10 \\
& =160 \mathrm{~m}^{2}
\end{aligned}
$$

3. One side of a square field is 12 m

Area of the square field $=l^{2}$

$$
\begin{aligned}
& =12 \times 12 \\
& =144 \mathrm{~m}^{2} \\
& =\operatorname{Rs} 2.50 \\
& =144 \times 2 . \\
& =\operatorname{Rs} 360
\end{aligned}
$$

Cost of levelling $1 \mathrm{~m}^{2}=$ Rs 2.50
Cost of levelling $144 \mathrm{~m}^{2}=144 \times 2.50$
4. Area of the rectangular hall

$$
=12 \times 20=240 \mathrm{~m}^{2}
$$

Area of the square slab $=40 \times 40$

$$
=1600 \mathrm{~cm}=0.16 \mathrm{~m}^{2}
$$

Number of slabs required to cover the floor

$$
\begin{aligned}
& =240 \div 0.16=1500 \\
& =\text { Rs } 15 \\
& =15 \times 1500 \\
& =\text { Rs } 22500
\end{aligned}
$$

Cost of single slab $=$ Rs 15
Cost of 1500 slabs $=15 \times 1500$
5. Area of a rectangular region $=840 \mathrm{~m}^{2}$

Breadth of the rectangular region $=15 \mathrm{~m}$
Area of a rectangular region $=l \times b$
$\therefore \quad$ Length $=\frac{\text { Area }}{\text { breadth }}$
Length of rectangular region $=\frac{840}{15}=56 \mathrm{~m}$
Perimeter of a rectangular region $=2(l+b)$

$$
\begin{aligned}
& =2(56+15) \\
& =2 \times 71 \\
& =142 \mathrm{~m}
\end{aligned}
$$

6. Area of parallelogram field $=$ base x height

$$
\begin{aligned}
& =15 \times 8 \\
& =120 \mathrm{~m}^{2} \\
& =\text { Rs } 20 \\
& =120 \times 20 \\
& =\text { Rs } 2400
\end{aligned}
$$

Cost of watering $1 \mathrm{~m}^{2}=$ Rs 20
Cost of watering $120 \mathrm{~m}^{2}=120 \times 20$
7. Area of a rhombus $=80 \mathrm{~m}^{2}$

Perimeter of the rhombus $=40 \mathrm{~m}$
\therefore One side of the rhombus $=10 \mathrm{~m}$ Divide the rhombus into two triangles Area of each triangle $=40 \mathrm{~m}^{2}$
Area of triangle

$$
=\frac{1}{2} \times b \times h
$$

Base of the triangle $=10 \mathrm{~m}$

$$
\begin{aligned}
& 40=\frac{1}{2} \times 10 \times h \\
& h=8 \mathrm{~m}
\end{aligned}
$$

$$
\text { Height }=8 \mathrm{~m}
$$

8. Base of the triangle $=12 \mathrm{~cm}$

Altitude of the triangle $=8 \mathrm{~cm}$
Area of the triangle

$$
=\frac{1}{2} \times b \times h
$$

$$
=\frac{12 \times 8}{2}
$$

$$
=48 \mathrm{~cm}^{2}
$$

9. Perimeter of square plot $=15 \times 4$

$$
=60 \mathrm{~m}
$$

Perimeter of the square plot $=$ Perimeter of the rectangular plot $=60 \mathrm{~m}$

$$
\begin{aligned}
\therefore \quad 60 & =2(l+b) \\
60 & =2(18+b) \\
60 & =36+2 b \\
2 b & =60-36 \\
2 b & =24 \\
b & =12 \mathrm{~m}
\end{aligned}
$$

Now,

$$
\begin{aligned}
\text { Area of square plot } & =l \times b \\
& =15 \times 15=225 \mathrm{~m}^{2}
\end{aligned}
$$

Area of rectangular plot $=l \times b$

$$
=18 \times 12=216 \mathrm{~m}^{2}
$$

Square plot has greater area.

$$
225-216=9 m^{2}
$$

$\therefore \quad$ Square plot has greater area by $9 \mathrm{~m}^{2}$.
10. Area of the rectangular lawn

$$
\begin{aligned}
& =l \times b \\
& =20 \times 16=320 \mathrm{~m}^{2}
\end{aligned}
$$

After surrounding by 2 m wide path,
$l=20+2+2=24 \mathrm{~m}$
$b=16+2+2=20 \mathrm{~m}$
Area of the lawn including surrounded path

$$
\begin{aligned}
& =24 \times 20 \\
& =480 \mathrm{~m}^{2}
\end{aligned}
$$

Area of the path = Area of the lawn including path - Area of the lawn without path

$$
\begin{aligned}
& =480 \mathrm{~m}^{2}-320 \mathrm{~m}^{2} \\
& =160 \mathrm{~m}^{2}
\end{aligned}
$$

Cost of levelling $1 \mathrm{~m}^{2}=$ Rs 12
Cost of levelling $160 \mathrm{~m}^{2}=160 \times 12$

$$
\text { = Rs } 1920
$$

11. Area of a parallelogram $=b \times h$; where b is the base and h is altitude or height of the parallelogram.

$$
\text { base }=20 \mathrm{~cm}=.20 \mathrm{~m}
$$

$$
3.20 \mathrm{~m}^{2}=0.20 \times h
$$

$$
\begin{aligned}
h & =\frac{3.20}{0.20} \\
& =16 \mathrm{~m}
\end{aligned}
$$

12. The dimensions of the pit are

$$
\begin{aligned}
& l=4.8 \mathrm{~m} \\
& b=2.5 \mathrm{~m} \\
& h=2 \mathrm{~m}
\end{aligned}
$$

The volume of earth removed from the pit

$$
\begin{aligned}
& =4.8 \times 2.5 \times 2 \\
& =24 \mathrm{~m}^{3}
\end{aligned}
$$

13. The dimensions of the cuboid are:
$l=4 \mathrm{~m}$
$b=3 \mathrm{~m}$
$h=2 \mathrm{~m}$
Surface Are of a cuboid $=2(l b+b h+l h)$

$$
\begin{aligned}
& =2(4 \times 3+3 \times 2+4 \times 2) \\
& =2(12+6+8) \\
& =2(26) \\
& =52 \mathrm{~m}^{2}
\end{aligned}
$$

14. The area of 4 walls $=2(12 \times 8)+2(4 \times 12)$

$$
\begin{aligned}
& =2 \times 96+2 \times 48 \\
& =192+96 \\
& =288 \mathrm{~m}^{2}
\end{aligned}
$$

15. (i) Area of square $=l \times b=l^{2}$

Perimeter of square $=2(l+l)=4 l$
$80=4 l$
$l=20 \mathrm{~cm}$

Area of square $=20 \times 20$

$$
=400 \mathrm{~cm}^{2}
$$

(ii) Area of square $=16 \times 16$

$$
=256 \mathrm{~cm}^{2}
$$

Area of rectangle $=20 \times 13$

$$
=260 \mathrm{~cm}^{2}
$$

Area of rectangle is larger by $4 \mathrm{~cm}^{2}$
16. Area of rectangle $=3 \times 4=12 \mathrm{~cm}^{2}$

3 times the over $=12 \times 3=36 \mathrm{~m}^{2}$
Area of square $=l^{2}$
$l^{2}=36 \mathrm{~m}^{2}$
$l=6 \mathrm{~m}$
17. Area of the garden $=40 \times 30=1200 \mathrm{~m}^{2}$
dimensions of garden after making path are $\mathrm{I}=40+3+3=46 \mathrm{~m} \quad \mathrm{~b}=30+3+3=36 \mathrm{~m}$
Area of garden with path $=46 \times 36=1566$
Area of path $=1656-1200$

$$
=456 \mathrm{~m}^{2}
$$

18. Surface are of a cylinder $=2 \pi r(h+r)$

$$
r=14 \mathrm{~cm}+\mathrm{h}=12 \mathrm{~cm}
$$

Surface area $=2 \times \frac{12}{\pi} \times 14^{2}(12+14)$

$$
\begin{aligned}
& =88 \times 26 \\
& =2288 \mathrm{~cm}^{2}
\end{aligned}
$$

19. Area of the square $A B C D=16 \times 16=256 \mathrm{~cm}^{2}$

Area of triangle $A D F=\frac{16 \times 8}{2}=64 \mathrm{~cm}^{2}$
Area of triangle CFF $=\frac{8 \times 8}{2}=32 \mathrm{~cm}^{2}$
Area of shaded part $=$ Area of square -
area of unshaded region

$$
\begin{aligned}
& =256 \mathrm{~cm}^{2}-96 \mathrm{~cm}^{2} \\
& =160 \mathrm{~cm}^{2}
\end{aligned}
$$

20. (i) Surface area of triangular prism

$$
\begin{aligned}
& =\left(s_{1}+s_{2}+s_{3}\right) \times l+b h \\
& =(5+5+6) \times 12+4 \times 6 \\
& =16 \times 12+24 \\
& =192+24 \\
& =216 \mathrm{~cm}^{2}
\end{aligned}
$$

(ii) Surface area of the cube $=6 l^{2}$
$6 l^{2}=96 \mathrm{~cm}^{2}$
$l^{2}=16 \mathrm{~cm}^{2}$
$l=4 \mathrm{~cm}$
Volume of the cube $=l^{3}$

$$
\begin{aligned}
& =4 \times 4 \times 4 \\
& =64 \mathrm{~cm}^{3}
\end{aligned}
$$

21. The perimeter of the floor $=64 \mathrm{~m}$

Total length of the four walls $=64 \mathrm{~m}$
Height of the hall $=5 \mathrm{~m}$
Area of all 4 walls $=64 \times 5$

$$
=320 \mathrm{~m}^{2}
$$

Cost of painting per sq. $m=$ Rs 8
Cost of painting $320 \mathrm{~m}^{2}=320 \times 8$

$$
=\text { Rs } 2560
$$

22. Area of $\triangle A B C=\frac{1}{2} \times$ base \times height

$$
\begin{aligned}
& =\frac{1}{2} \times 16 \times 6 \\
& =48 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of $\triangle \mathrm{ACD}=\frac{1}{2} \times 16 \times 4$

$$
=32 \mathrm{~cm}^{2}
$$

Area of $A B C D=$ Area of $\triangle A B C$

$$
\begin{aligned}
& + \text { Area of } \triangle \mathrm{ACD} \\
& =48+32 \\
& =80 \mathrm{~cm}^{2}
\end{aligned}
$$

23. Volume of a cylinder $=\pi r^{2} h$

$$
\begin{aligned}
2310 & =\frac{22}{7} \times 7 \times 7 \times h \\
2310 & =154 h \\
h & =2310 \div 154 \\
h & =15 \mathrm{~cm}
\end{aligned}
$$

24. (i) Area of rectangle $=l \times b$

$$
=20 \times 14=280 \mathrm{~cm}^{2}
$$

The four unshaded triangles are equal.

$$
\text { Total area }=4\left(\frac{b \times h}{2}\right)
$$

where $b=10, h=7$

$$
\begin{aligned}
& =4 \times\left(\frac{10 \times 7}{2}\right) \\
& =\frac{4 \times 10^{5} \times 7}{2}=140 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of shaded region $=280-140$

$$
=140 \mathrm{~cm}^{2}
$$

Therefore, option B is correct.
(ii) Area of parallelogram $=$ base \times height $210=$ base $\times 14$
base $=210 \div 14$

$$
\begin{aligned}
& =15 \mathrm{~cm} \\
& =0.15 \mathrm{~m}
\end{aligned}
$$

Therefore, option D is correct.
25. Volume of the triangular prism
$=$ Base area \times height
$=280 \times 35$
$=9800 \mathrm{~cm}^{3}$
$=9800 \div 1000000$
$=0.0098 \mathrm{~m}^{3}$

15. Data Handling

Exercise 16A

1. (i) raw
(ii) class interval
(iii) frequency
(iv) height
(v) 360°
2. (i) True
(ii) True

Range is the number which tells the difference between smallest and greatest data values.
(iii) True

Data value is represented by the height of the bar, i.e. y-axis
(iv) True

Pie chart is a circular chart and it interprets the data by measuring the sizes of different sectors.
(v) True

Class frequencies tell about how many times a data occurs, therefor, sum of class frequencies is same as number of data items.
3.

4.

Class X result for the last five years

5.

Cement Production in thousands

Cement Production during year 1980

6. Number of students who like to

7.

8.

9. (i) 90°
(ii) Sum of the angles of the sectors of:

Banana + Mango + Apple + Peach $=360^{\circ}$
$90^{\circ}+80^{\circ}+160^{\circ}+$ Peach $=360^{\circ}$

$$
330^{\circ}+\text { Peach }=360^{\circ}
$$

\therefore Angle of sector of Peach $=360^{\circ}-330^{\circ}$ $=30^{\circ}$
(iii) Sector area of 30° represents 3 students.
10° represents I student
Hence, 90° represents $\frac{90}{10}=9$ students
Number of students like banana $=9$
Number of students like mango
$=\frac{80}{10}=8$
Number of students like apple
$=\frac{160}{10}=16$
Number of students like peach
$=\frac{30}{10}=3$
Total number of students $=9+816+3$
$=36$ students
(iv) \% of students like bananas

$$
\begin{aligned}
& =\quad \frac{90}{360_{4}} \times 100 \% \\
& =25 \%
\end{aligned}
$$

10. Total number of people
$=240+180+60+120=600$
Cricket:
Percentage $=\frac{240^{40}}{600} \times 100 \%=40 \%$
Angle of sector $=\frac{240^{4}}{600} \times 360^{36}=144^{\circ}$
Hockey:
Percentage $=\frac{480^{3}}{600} \times 100 \%=30 \%$
Angle of sector $=\frac{480^{3}}{600} \times 36{ }^{36}=108^{\circ}$
Tennis:
Percentage $=\frac{60^{10}}{\frac{600}{\sigma_{1}}} \times 100=10 \%$
Angle of sector $=\frac{6^{1}}{\frac{600}{10_{1}}} \times 360^{36}=36^{\circ}$
Basket ball:
Percentage $=\frac{120}{600} \times 100^{1}=20 \%$
Angle of sector $=\frac{120^{2}}{60 \theta} \times 36 \theta^{36}=72^{\circ}$
11. (i) In week 2 he sold 10 candies.
(ii) In the first 4 weeks he sold 100 candies.
(iii) In week 2 he sold 10 less candies then week 1.
(iv) He sold 150 candies altogether in six weeks.
(v) The average number of candies
$=\frac{\text { Total number of candies }}{\text { number of week }}$
$=\frac{150}{6}$
$=25$
\therefore He sold 25 candies as average of per week.

Exercise 16 B

1. (i) Central tendencies
(ii) Mean
(iii) Mode

Mode is the value which occur most in the data.
(iv) $\frac{\sum \mathrm{W} x}{\sum \mathrm{~W}}$

Weighted mean is the mean of the data having different weights assigned to the values.
(v) $\frac{\sum x}{n}$; where $\sum x$ is the sum of values and n is the number of values.
2. (i) True (by definition)
(ii) True: Mode of data can be found by simply counting the values. However, for bigger data, making tally chart or arranging in descending order is more helpful.
(iii) True: the median and mode are the average values of the data which define central tendencies.
(iv) True
(v) True: There may be some values is the data which occur equal numbers of time, so a data can have more than one mode.
3. The mean of the data $=\frac{\sum x}{n}$

$$
\begin{aligned}
& =\frac{5+11+6+17+2+7}{6} \\
& =\frac{48}{6}
\end{aligned}
$$

$$
\therefore \text { Mean }=8
$$

To find median, we arrange the data is ascending order
$2,5,6,7$ 11,17
The two middle values are 6 and 7 .
The mean of 6 and 7 is $\frac{6+7}{2}=\frac{13}{2}=6.5$
\therefore Median $=6.5$
Mode is the most occurring value of the data. The given data has no mode.
4. Range of the data $=$ highest value - lowest value

$$
-=111-81=30
$$

We can take class width of 5 to make 6 intervals. so, class width $=\frac{30}{6}=5$
Number of class intervals $=6$

Class intervals	Tally	Frequencies
80-85	H+1	5
86-91	H 1	6
92-97	H+1	6
98-103	H+1	6
104-109	H 1	6
110-115	I	1

5. First 15 natural numbers $=1,2,3,4,5,6,7$, $8,9,10,11,11,12,13,14,15$

Sum of numbers $=115$
Number of values $=15$

$$
\begin{aligned}
\text { Mean } & =\frac{\sum x}{n} \\
& =\frac{115}{15}=7.66
\end{aligned}
$$

6. First eight even natural numbers are $2,4,6$, $8,10,12,14,16$
Sum of the first eight natural numbers
=72

Mean of the first eight natural numbers

$$
\begin{aligned}
& =72 \div 8 \\
& =9
\end{aligned}
$$

7. Average salary of 25 workers $=$ Rs 2500

Total salary of 25 workers $\quad=2500 \times 25$

$$
=\text { Rs } 62500
$$

The salary of the manager $=$ Rs 35000
Total salary of 26 employees

$$
\begin{aligned}
& =62500+35000 \\
& =\text { Rs } 97500
\end{aligned}
$$

Average salary of 26 employees

$$
\begin{aligned}
& =97500 \div 26 \\
& =\text { Rs } 3750
\end{aligned}
$$

8.

x	11	13	15	18	19	20	21	22
f	4	3	7	16	4	3	2	1
$\sum x$	44	39	105	288	76	60	42	22

$\sum f x=506$
$\sum f=40$
Mean $=\frac{\sum f x}{\sum f}$
Mean $=\frac{676}{40}$

$$
=16.9
$$

9. Mean $=\frac{\sum x}{n}$

$$
\begin{aligned}
\Sigma x \quad= & 20+50+30+34+45+27+40+ \\
& 10+50+50+48+52 \\
= & 456 \\
= & 12 \\
n & =\frac{456}{12}=38
\end{aligned}
$$

Exercise 16 C

1. (i) Certain; because it is a fact that Wednesday comes before Thursday.
(ii) Possible; because number of dots on a dice are $1,23,4,5$, and 6 .
Hence, it is possible that we get a 5 by throwing a single dice.
(iii) Impossible; it is a fact that sun does not show because at 9.00 it is night time.
2. Total number of letters in PHOTOSYNTHESIS = 14
Number of S in the word $=3$
Probability of choosing a S is $\mathrm{P}(\mathrm{S})$.
$P(S)=\frac{\text { Number of favourable outcomes }}{1 \text { Total number of outcomes }}$
Probability of choosing $S=\frac{3}{14}$
3. (iii), (iv), and (vi) can not be a probability, because their values are greater than 1.
(iv) can not be a probability, because probability can not be a negative number.
4. Total number of outcomes
$=13$ yellow balls +17 blue balls
$=30$ balls

Number of favourable outcomes i.e. yellow balls $=13$
Probability of choosing a yellow ball $=\frac{13}{30}$
5. (i) impossible unlikely just as likely likely certain

(ii)
(iii)

(iv)

6. Probability (P)

$$
=\frac{\text { Number of favourable outcomes }}{\text { Total number of outcomes }}
$$

(i) Number of green balls $=3$

Total number of outcomes $=13$

$$
P(\text { green balls })=\frac{3}{13}
$$

(ii) Number of yellow balls $=6$

Total number of outcomes $=13$

$$
P(\text { green balls })=\frac{6}{13}
$$

(iii) Number of red balls $=4$ Total number of outcomes $=13$

$$
P(\text { red balls })=\frac{4}{13}
$$

7. There are 52 weeks in a year.
\therefore there will be 52 Mondays.
The total numbers of outcomes $=52$
$P($ one Monday to be a holiday $)=\frac{1}{52}$
8. Probability of selecting a white ribbon $=\frac{1}{7}$

$$
P(\text { white ribbon })=\frac{1}{7}
$$

$P($ not a white ribbon $)=1-\frac{1}{7}$

$$
=\frac{6}{7}
$$

9. Total number of outcomes $=8$
(i) $P($ spinning a 5$)=\frac{2}{8}$
(ii) $P($ spinning a 3$)=\frac{2}{8}$
$P($ not spinning a 3$)=1-\frac{2}{8}$

$$
=\frac{6}{8}
$$

(iii) $P($ spinning a 6) $=0$

Since, there is no 6 on the spinner.
(iv) $P($ not spinning a 6$)=1$
\therefore there is no option of spinning 6 .
So it is a certain event having a probability equal to 1 .

Multiple Choice Questions 16

1. Option A is correct, because the event which is going to happen is a possible event.
2. Option D is correct, because $1-0.3=0.7$
3. Option A is correct. There are three even numbers out of total six numbers.
4. Option D is correct, because throw of a coin can give only one possible event. Head and tail can not happen together.
5. Option B is correct.
6. Option A is correct, 8 is central value of data arranged in ascending order.
7. Option B is correct, using Mean $=\frac{\sum x}{n}$
8. Option B is correct, because 10 is occurring two times, while all the other values are occurring once.
9. Option D is correct.
10. Option A is correct, secondary data are generated by government institutions, government publications, or censuses etc.

Teacher's Note

Don't be Book Piracy and Plagiarism are Crimes.

Buy Genuine Oxford Books

Look out for the new security label whenever you purchase an Oxford textbook or supplementary reader. Labels with the features shown below are proof of genuine Oxford books.

The image of Quaid's Mausoleum changes colour from orange to green when viewed from different angles.

The labels have security cut marks to prevent them from being peeled off and reused.

The word 'ORIGINAL' appears when the area under 'RUB HERE' is rubbed with a coin.

‘OUP' written in very small print becomes visible when viewed through a magnifying glass.

- Download free ‘FPQR Tasdiq’ app from App Store/Play Store on your smartphone.
- Scan QR code on the security label to verify if you have purchased a genuine Oxford book.

The labels tear if peeled off (6) from the book cover.

Pirated books can be recognised by:

- inferior production quality
- low-grade paper
- variations in texture and colour
- poor print quality
- blurred text and images
- poor binding and trimming
- substandard appearance of the book

Do not accept the book if the label is missing, has been torn or tampered with, the colour on the security label does not change, or the word 'ORIGINAL' does not appear upon rubbing the area with a coin.

If you suspect that you are being sold a pirated book without the security label, please contact:
Oxford University Press,
No. 38, Sector 15, Korangi Industrial Area, Karachi-74900, Pakistan. Tel.: (92-21) 35071580-86 Fax: (92-21) 35055071-72
Toll-free No.: 0800-68775 (9 a.m. to 5 p.m.; Monday to Friday)
Email: central.marketing.pk@oup.com
Website: www.oup.com.pk Find us on:

